$\odot$ 

 $\bigcirc$ 

·C

9

NGINEERING DATA TRANSMITTAL

Page 1 of \_\_\_\_

1. EDT

142903

|                                  | : (Rec             | eiving Orga<br>le             | anization)                                    |                             | 3. From: (<br>Environm<br>Engineer    | ental         |              |                                               | 4. Related                                                 | EDT No.                                    |                                    | -           |                                   |  |  |  |
|----------------------------------|--------------------|-------------------------------|-----------------------------------------------|-----------------------------|---------------------------------------|---------------|--------------|-----------------------------------------------|------------------------------------------------------------|--------------------------------------------|------------------------------------|-------------|-----------------------------------|--|--|--|
| 100-                             |                    | g./Dept./D<br>Remedia<br>tion |                                               |                             | 6. Cog. Eng.<br>A. D. Kr              |               |              | 7. Purchase Order No.:<br>N/A                 |                                                            |                                            |                                    |             |                                   |  |  |  |
| 8. Or                            | iginato            | r Remarks:<br>o Distr         | ibution                                       | _·                          | <del></del>                           | e.            | garanti Ana. | 9. Equip./Component No.: N/A                  |                                                            |                                            |                                    |             |                                   |  |  |  |
| ,,,,,,                           |                    |                               |                                               |                             | į.                                    | 7/^<br>       | fan.         |                                               | 10. System                                                 |                                            | acilit                             | <b>/:</b>   |                                   |  |  |  |
| 11. R                            | eceiver            | Remarks:                      |                                               |                             |                                       |               | WAY BOO      | O .                                           | 12. Major                                                  | Assm. Dw                                   | -                                  |             |                                   |  |  |  |
|                                  |                    |                               |                                               |                             | i v                                   |               | E. Core      |                                               | 13. Permi                                                  | t/Permit<br>N/                             |                                    | ntion       | No.:                              |  |  |  |
|                                  | _                  |                               |                                               |                             |                                       |               | 1000         |                                               | 14. Requi                                                  | red Respo                                  |                                    | te:         |                                   |  |  |  |
| 15.                              |                    |                               |                                               | DAT.                        | A TRANSMITTE                          | D             |              |                                               | (F)                                                        | (G)                                        | (!!)                               |             | <b>(I)</b>                        |  |  |  |
| Item (B) Document/Drawing No. Sh |                    |                               |                                               | (C)<br>Sheet<br>No.         | (D)<br>Rev.<br>No.                    | (1            |              | scription of Data<br>smitted                  | impact<br>Level                                            | Reason<br>for<br>Trans-<br>mittal          | Origi-<br>nator<br>Dispo<br>sition |             | Receiv-<br>er<br>Dispo-<br>sition |  |  |  |
| 1                                | WHC-               | -SD-EN-T                      | I-157                                         |                             | 0                                     | for           |              | ation Repor<br>-1 Operable<br>Pit             |                                                            | 1/2                                        | 1                                  |             |                                   |  |  |  |
|                                  | _                  |                               |                                               | <u> </u>                    | _                                     | <u> </u><br>  |              | ····                                          |                                                            |                                            |                                    | _           |                                   |  |  |  |
|                                  |                    | ···                           |                                               |                             |                                       |               |              |                                               |                                                            |                                            |                                    |             |                                   |  |  |  |
|                                  |                    |                               |                                               |                             |                                       |               | <u></u>      |                                               |                                                            |                                            |                                    | +           |                                   |  |  |  |
| 16.                              |                    |                               |                                               |                             |                                       | K             | Υ            |                                               |                                                            |                                            |                                    |             |                                   |  |  |  |
|                                  | mpact Le           |                               |                                               |                             | for Transmittal                       | (G)           |              |                                               | <del></del>                                                | n (H) & (1)                                |                                    |             |                                   |  |  |  |
| 1, 2, 3<br>MRP 5                 | , or 4 (se<br>.43) | ne                            | 1. Approval     2. Release     3. Information |                             | riew<br>st-Review<br>t. (Receipt Ackn | ow. Req       | uired)       | Approved     Approved w/co     Disapproved w/ | mment E                                                    | l. Reviewed<br>5. Reviewed<br>5. Receipt a | w/com                              | nent        |                                   |  |  |  |
| (G)                              | (H)                | 17.                           |                                               | <b></b>                     | _                                     |               | DISTRIBUTIO  |                                               |                                                            |                                            |                                    | (G)         | (H)                               |  |  |  |
| Rea-                             | Disp.              | (J) Nan                       | ne (K) Si                                     | gnature (                   | L) Date (M) M                         |               | (J) Na       | <u> </u>                                      | ure (L) Date                                               | (M) MSIN                                   | ,                                  | Rea-<br>son | Disp.                             |  |  |  |
| 1/2                              | 1                  | Cog.Eng.                      | A. D. Kru                                     | 19/1/1/2                    |                                       | H6-02         | EDMC (2)     | )                                             | H6-0                                                       | 8 #                                        | -22                                | 3           |                                   |  |  |  |
| 1/2                              | 1                  | Cog. Mgr.                     | R. P. Her                                     | ckel                        | HU 5-12-1                             | <u>4</u> 6-02 | Central      | Files (2)                                     |                                                            | L8                                         | -04                                | 3           |                                   |  |  |  |
| 1/2                              | 1                  | QA G. S.                      | .Corrigan 🤇                                   | Sand                        | aring 5-12 51                         | ³H4-16        |              |                                               |                                                            |                                            |                                    |             |                                   |  |  |  |
|                                  |                    | Safety                        |                                               |                             | V                                     |               |              |                                               |                                                            |                                            |                                    |             |                                   |  |  |  |
|                                  |                    | Env.                          |                                               |                             |                                       |               |              |                                               |                                                            |                                            |                                    |             |                                   |  |  |  |
|                                  | ·                  |                               |                                               |                             |                                       |               | F. Stone     | :<br>                                         |                                                            |                                            | -01                                | 3           |                                   |  |  |  |
|                                  |                    | <u></u>                       |                                               |                             |                                       | 1 - 2 -       | ERC          |                                               |                                                            |                                            | -07                                | 3           | <u></u>                           |  |  |  |
| Origina                          |                    | 5-12<br>T) Date<br>(07/91) GE | Author for Rec                                | ized Repress<br>elving Orga | entative Date<br>nization             |               |              |                                               | 21. DOE AL<br>Ltr. I<br>I Approve<br>I Approve<br>I Disapp | No.<br>ed<br>ed w/comm                     | nents                              |             | <del></del>                       |  |  |  |

# INSTRUCTIONS FOR COMPLETION OF THE ENGINEERING DATA TRANSMITTAL

(USE BLACK INK OR TYPE)

| }                 |                                                      |     | (USE BLACK INK OR 1 TPE)                                                                                                                                                                                          |
|-------------------|------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLOCK             | TITLE                                                |     |                                                                                                                                                                                                                   |
| (1)*              | EDT                                                  | •   | Enter the assigned EDT number.                                                                                                                                                                                    |
| (2)               | To: (Receiving Organization)                         | •   | Enter the individual's name, title of the organization, or entity (e.g., Distribution) that the EDT is being transmitted to.                                                                                      |
| (3)               | From: (Orginating Organization                       | •   | Enter the title of the organization originating and transmitting the EDT.                                                                                                                                         |
| (4)               | Related EDT                                          | •   | Enter EDT numbers which relate to the data being transmitted.                                                                                                                                                     |
| (5)*              | Project/Program/Dept./Div.                           | •   | Enter the Project/Program/Department/Division title or Project/Program acronym or Project<br>Number, Work Order Number or Organization Code.                                                                      |
| (6)               | Cognizant/Project Engineer                           | •   | Enter the name of the individual identified as being responsible for coordinating disposition of the EDT.                                                                                                         |
| (7)               | Purchase Order No.                                   | •   | Enter related Purchase Order (P.O.) Number, if available.                                                                                                                                                         |
| (8)*              | Originator Remarks                                   | •   | Enter special or additional comments concerning transmittal, or "Key" retrieval words may be entered.                                                                                                             |
| (9)               | Equipment/Component No.                              | •   | Enter equipment/component number of affected item, if appropriate.                                                                                                                                                |
| (10)              | System/Bldg./Facility                                | •   | Enter appropriate system, building or facility number, if appropriate.                                                                                                                                            |
| (11)              | Receiver Remarks                                     | •   | Enter special or additional comments concerning transmittal.                                                                                                                                                      |
| (12)              | Major Assm. Dwg. No.                                 | •   | Enter applicable drawing number of major assembly, if appropriate.                                                                                                                                                |
| (13)              | Permit/Permit Application No.                        | •   | Enter applicable permit or permit application number, if appropriate.                                                                                                                                             |
| (14)              | Required Response Date                               | •   | Enter the date a response is required from individuals identified in Block 17 (Signature/Distribution).                                                                                                           |
| (15)*             | Data Transmitted                                     |     | •                                                                                                                                                                                                                 |
| 1                 | (A)* Item Number                                     | •   | Enter sequential number, beginning with 1, of the information listed on EDT.                                                                                                                                      |
| -                 | (B)* Document/Drawing No                             | . • | Enter the unique identification number assigned to the document or drawing being transmitted.                                                                                                                     |
|                   | (C)* Sheet No.                                       | •   | Enter the sheet number of the information being transmitted. If no sheet number, leave blank.                                                                                                                     |
| Î                 | (D)* Rev. No.                                        | •   | Enter the revision number of the information being transmitted. If no revision number, leave blank.                                                                                                               |
|                   | (E) Title or Description of<br>Data Transmitted      | •   | Enter the title of the document or drawing or a brief description of the subject if no title is identified.                                                                                                       |
|                   | (F) Impact Level                                     | •   | Enter the appropriate impact Level (Block 15). Use NA for non-engineering documents.                                                                                                                              |
| <b>†</b> ?        | (G) Reason for Submittal                             | •   | Enter the appropriate code to identify the purpose of the data transmittal (see Block 16).                                                                                                                        |
|                   | (H) Originator Disposition                           | •   | Enter the appropriate disposition code (see Block 16).                                                                                                                                                            |
| T <sup>*</sup>    | (I) Receiver Disposition                             | •   | Enter the appropriate disposition code (see Block 16).                                                                                                                                                            |
| <u>~</u> (16)     | Көү                                                  | •   | Number codes used in completion of Blocks 15 (G), (H), and (I), and 17 (G), (H) (Signature/Distribution).                                                                                                         |
| (17)              | Signature/Distribution                               |     |                                                                                                                                                                                                                   |
|                   | (G) Reason                                           | •   | Enter the code of the reason for transmittal (Block 16).                                                                                                                                                          |
|                   | (H) Disposition                                      | •   | Enter the code for the disposition (Block 16).                                                                                                                                                                    |
|                   | (J) Name                                             | •   | Enter the signature of the individual completing the Disposition 17 (H) and the Transmittal.                                                                                                                      |
|                   | (L) Date                                             | •   | Enter date signature is obtained,                                                                                                                                                                                 |
|                   | (M) MSIN                                             | •   | Enter MSIN. Note: If Distribution Sheet is used, show entire distribution (including that indicated on Page 1 of the EDT) on the Distribution Sheet.                                                              |
| (18)              | Signature of EDT Originator                          | •   | Enter the signature and date of the individual originating the EDT (entered prior to transmittal to Receiving Organization). If the EDT originator is the Cognizant/Project Engineer, sign both Blocks 17 and 18. |
| (19)              | Authorized Representative for Receiving Organization | •   | Enter the signature and date of the individual identified by the Receiving Organization as authorized to approve disposition of the EDT and acceptance of the data transmitted, as applicable.                    |
| (20) <del>*</del> | Cognizent/Project Manager                            | •   | Enter the signature and date of the Cognizant/Project Engineer's manager. (This signature is authorization for release.)                                                                                          |
| (21)              | DOE Approval                                         | •   | Enter DOE approval (if required) by letter number and indicate DOE action.                                                                                                                                        |

<sup>\*</sup>Asterisk denote the required minimum items checked by Configuration Documentation prior to release; these are the minimum release requirements.

30

9. Impact Level

|  |  | ומפות |  |
|--|--|-------|--|
|  |  |       |  |
|  |  |       |  |

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy.

Printed in the United States of America

DISCLM-4.CHP (1-91)

**6** 

# ACRONYMS

|   |        | ·                                                    |
|---|--------|------------------------------------------------------|
|   | %D     | Percent difference                                   |
|   | AA     | Atomic absorption                                    |
|   | BFB    | Bromofluorobenzene                                   |
|   | BNA    | Base/neutral and acid (equivalent to semi-volatiles) |
| • | CCV    | Continuing calibration verification                  |
|   | CLP    | Contract Laboratory Program                          |
|   | CRDL   | Contract required detection limit                    |
|   | CRQL   | Contract required quantitation limit                 |
|   | DBC    | Dibutylchlorendate                                   |
|   | DFTPP  | Decafluorotriphenylphosphine                         |
|   | DQO    | Data quality objectives                              |
|   | EPA    | U.S. Environmental Protection Agency                 |
|   | GC/MS  | Gas chromatography/mass spectrometry                 |
|   | GC     | Gas chromatography                                   |
|   | GFAA   | Graphite furnace atomic absorption                   |
|   | GPC    | Gel permeation chromatography                        |
|   | ICP    | Inductively coupled plasma emission spectrometry     |
|   | ICS    | ICP interference check sample                        |
|   | ICV    | Initial calibration verification                     |
|   | IDL    | Instrument detection limit                           |
|   | MSA    | Method of standard addition                          |
|   | MS/MSD | Matrix spike/matrix spike duplicate                  |
|   | PCB    | Polychlorinated biphenyl                             |
|   | PEM    | Performance evaluation mixture                       |
|   | QA     | Quality assurance                                    |
|   | QC     | Quality control                                      |
|   | RF     | Response factor                                      |
|   | RIC    | Reconstructed ion chromatogram                       |
|   | RPD    | Relative percent difference                          |
|   | RRF    | Relative response factor                             |
|   | RRT    | Relative retention time                              |
|   | RSD    | Relative standard deviation                          |
|   | RT     | Retention time                                       |
|   | SDG    | Sample delivery group                                |
|   | SOW    | Statement of work                                    |
|   | TAL    | Target analyte list                                  |
|   | TCL    | Target compound list                                 |
|   | TIC    | Tentatively identified compounds                     |
|   | TOC    | Total organic carbon                                 |
|   | TOX    | Total organic halides                                |
|   | VOC    | Volatile organic compounds                           |

0

#### CONTENTS

| 1.0 | INTRODUCTION                      | 1-  |
|-----|-----------------------------------|-----|
| 2.0 | VOLATILE ORGANIC DATA VALIDATION  | 2-  |
| 3.0 | SEMI-VOLATILE DATA VALIDATION     | 3-  |
| 4.0 | PESTICIDE AND PCB DATA VALIDATION | 4-  |
| 5.0 | INORGANIC DATA VALIDATION         | 5-: |
| 6.0 | WET CHEMISTRY DATA VALIDATION     | 6-: |
| 7.0 | REFERENCES                        | 7-  |

 $\bigcirc$ 

S

3

**()** 

# 1.0 INTRODUCTION

Since Westinghouse-Hanford has requested that a minimum of 20% of the total number of Sample Delivery Groups must be reported the data from the chemical analysis of twenty-two samples from the 100-NR-1 Operable Unit Groundwater Drilling Remedial Investigation and their related quality assurance samples were reviewed and validated to verify that reported sample results were of sufficient quality to support decisions regarding remedial actions performed at this site. The samples were analyzed by Thermo-Analytical Laboratories (TMA) using U.S. Environmental Protection Agency (EPA) CLP protocols.

# Sample analyses included:

- Volatile organics
- Semi-volatile organics
- Pesticide/PCB organics
- Inorganics

U

 $\mathcal{A}$ 

General chemical parameters.

The table below lists the Sample Delivery Groups (data packages) that were validated and included in this report.

| SDG<br>Package<br>No. | Matrix | No. of<br>Samples<br>Analyzed | Parameters                          |
|-----------------------|--------|-------------------------------|-------------------------------------|
| B07Q52                | Soil   | 11                            | voc                                 |
| B07Q52                | Soil   | 10                            | BNA, Pest/PCB, Inorganics, Wet Chem |
| B07Q63                | Soil   | 11                            | voc                                 |
| B07Q63                | Soil   | 10                            | BNA, Pest/PCB, Inorganics, Wet Chem |

All of the data were analyzed by TMA. Data quality was reviewed and analytical results validated using Westinghouse-Hanford procedures and related EPA CLP protocols and guidelines. Data were qualified based upon their quality and the guidance provided by these sources. In instances where the two protocols differed, the Westinghouse-Hanford guidance was followed.

Two sets of field duplicate samples were submitted to TMA as shown below:

B07Q52 — B07Q53 B07Q71 — B07Q72

Sample results were compared for their accuracy using the sample guidelines for determining the RPD between a sample and its duplicate. All results fell within the required control limits for all organic and inorganic parameters with the following exceptions:

• Sample numbers B07Q52 and B07Q53 in SDG No. B07Q52.

| Analytes  | RPD   |
|-----------|-------|
| Aluminum  | 24.1  |
| Calcium   | 30.1  |
| Lead      | 31.5  |
| Magnesium | 29.5  |
| Manganese | 23.1  |
| Mercury   | 90.2  |
| Zinc      | 21.5  |
| Sulfate   | 90.4  |
| N02N03    | 200.0 |

Sample numbers B07Q71 and B07Q72 in SDG No. B07Q63.

| <u>Analytes</u> | RPD   |
|-----------------|-------|
| Aluminum        | 21.9  |
| Iron            | 66.5  |
| Vanadium        | 70.4  |
| Zinc            | 200.0 |

9

Two sets of split samples were submitted to TMA by Westinghouse-Hanford. They are sample number B07Q52 in SDG No. B07Q52 and sample number B07Q71 in SDG No. B07Q63. The equivalent split samples B07Q54 and B07Q70 have, to date, not been received by A.T. Kearney validation staff and therefore results could not be compared for their accuracy.

The report is broken down into sections for each chemical analysis type. Each section addresses the data package completeness, holding time adherence, instrument calibration and tuning acceptability, blank results, accuracy, precision, system performance, as well as the compound identification and quantitation. In addition, each section has an overall assessment and summary for the data packages reviewed for the particular chemical analyses. Detailed backup information is provided to the reader by SDG No. and sample number. For each data package, a matrix of chemical analysis per sample number is presented, as well as data qualification summaries.

Laboratory and data validation personnel added qualifiers to the reported data based on specified data quality objectives. The data reporting qualifiers are summarized as follows:

- U Indicates the analyte was analyzed for and not detected. The value reported is the sample quantitation limit corrected for dilutions and moisture content. It should be noted that the sample quantitation limit may be higher or lower than the contract or method required detection limit, depending on instrumentation, matrix and concentration factors.
- J Indicates the analyte was analyzed for and detected. However, the associated value is considered to be an estimate due to identified QC deficiencies. Data flagged with a "J" may be usable for decision making purposes, depending upon the DQOs of the project. Laboratories qualify all reported organic detects below CRQL with a "J" per the CLP procedures.

Ş

0

- UJ Indicates the analyte was analyzed for and not detected. However, the associated detection limit is considered to be an estimate due to identified QC deficiencies. Detection limits flagged with a "UJ" may be usable for decision making purposes, depending upon the DQOs of the project.
- JN Indicates the analyte was analyzed for and that there is presumptive evidence of the presence of the compound. The concentration reported is considered an estimate which should be used for informational purposes only.
- E Indicates the analyte was analyzed for and detected at a concentration outside of the calibration range of the instrument. All reported concentrations flagged with an "E" are estimates which may contain significant error.
- R Indicates the analyte was analyzed for and due to a significant QC deficiency, the data are deemed unusable. Analytic results flagged "R" are invalid and provide no information as to whether or not the analyte is present.

The results of data validation performed for the 100-NR-1 Operable Unit Groundwater Drilling Remedial Investigation are contained in the tables following each of the chapters in this report.

Several general quality trends which resulted in data qualification were observed. These included:

- Minor blank contamination was noted in the volatile and semi-volatile results for several samples. The contaminants were compounds commonly found in analytical laboratories and the corresponding sample results were flagged accordingly.
- The holding time from extraction to analysis was exceeded, though not grossly, for several of the BNA and pesticide/PCB samples. The associated results were flagged accordingly.
- The initial calibration results for a few pesticide/PCB compounds did not meet QC limits. All associated results were flagged as estimates.
- The surrogate recovery results for two pesticide/PCB compounds did not meet QC limits in one sample. All associated results were qualified as estimates and flagged "J".
- The metal analysis showed minor matrix spike accuracy problems, duplicate analyses precision results outside of QC, and analytical spike recoveries below the QC limit. Approximately 30 percent of the metals results were flagged "J" due to these factors.
- Some blank contamination was noted in the inorganics analysis. Associated results were flagged accordingly.

. .

1

 The holding time from sample collection to preparation and analysis was exceeded for pH, fluoride and sulfate analyses in both wet chemistry data packages. Associated results were flagged accordingly.

Soil sample number B07Q55 in SDG No. B07Q52 and sample number B07Q63 in SDG No. B07Q63 have been listed and verified by Westinghouse-Hanford staff as equipment blanks. Under USEPA protocol, equipment blanks are water samples used to indicate whether or not decontamination procedures were adequate or that contamination was not inherent in the equipment used. In this case, the equipment blank could only be validated in terms of precision, accuracy, completeness and representativeness to the data provided but could not be validated as a comparison to other samples within the Sample Delivery Group. Therefore, associated samples were not flagged on the basis of positive results found in the equipment blank.

In general, the protocol-specific QA/QC requirements were met for the samples analyzed in this investigation with the exceptions noted above and discussed in detail in the chapters to follow. All requested analyses were performed.

With the exceptions noted above, the protocol-specific data quality objectives in terms of precision, accuracy, completeness, representativeness, and comparability have been met.

| SAMPLE LOCATION INFORMATION |                      | TAMSORNI | AND SAMPLE       |                    |
|-----------------------------|----------------------|----------|------------------|--------------------|
| PAJITAIOV                   | SYMBLED              | XINTAM   | NOMBER           | IOCYTION<br>SYMBIE |
| 2-5                         | 75/60/5T             | s        | B07Q52           | TSO-N-T            |
| S-2                         | TS/09/92             | S        | B07Q53           |                    |
| 5-2                         | TS/09/92             | s        | B07Q54           |                    |
| 5-2                         | 75/09/55             | s        | BOZĞE            |                    |
| S-2                         | TS/09/92             | S        | B07Q56           |                    |
| 5-2                         | TS/09/92             | s        | BO7Q57           |                    |
| <b>5-2</b>                  | 75/09/95             | S        | B07Q58           |                    |
| <b>5-2</b>                  | 75/09/35             | s        | B07Q59           |                    |
| <b>5-2</b>                  | TS/00/03             | ទ        | B07Q60           |                    |
| 2-Z                         | TS/00/05             | ន        | B07061           |                    |
| 3-Z                         | Z6/60/2T             | S        | B07062           |                    |
| 9-Z                         | 12/09/92             | S        | TC9QV0E          |                    |
| 6-Z                         | 72/18/92             | S        | B07063           |                    |
| 5-6<br>5-7                  | 72/18/92             | S        | B07064           |                    |
| 5-6<br>7-8                  | 72/18/92             | S        | B07065           |                    |
| 5-6<br>5-8                  | 72/18/92             | S<br>S   | B07067           |                    |
| 5-c<br>5-7                  | 75\78\65<br>75\78\65 | S        | B07Q67<br>B07Q68 |                    |
| 6-2<br>6-2                  | 75/77/27             | S        | B07Q69           |                    |
| 6-Z                         | 15/18/65             | S        | B07Q70           |                    |
| 5-3                         | 75/78/92             | 5        | BOZOZI           |                    |
| 5-2                         | 75/78/65             | S        | BOZOZS           |                    |
| 5-6                         | 75/78/95             | S        | BO7Q73           |                    |
| 5-5                         | 75/78/65             | S        | BO7Q74           |                    |
| 5-Z                         | 12/18/92             | s        | B07Q75           |                    |
| 2-10                        | 12/18/92             | s        | BO7Q76           |                    |

# 2.0 VOLATILE ORGANIC DATA VALIDATION

#### 2.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

B07Q52

B07Q63

# 2.2 HOLDING TIMES

 $\bigcirc$ 

 $\bigcirc$ 

·C

0

Analytical holding times were assessed to ascertain whether the Westinghouse-Hanford holding time requirements for volatile organic analyses were met by the laboratory. The Westinghouse-Hanford holding time requirements for volatile organic analyses are as follows: soil samples must be analyzed within 14 days of the date of sample collection; aqueous samples must be analyzed within seven days of the date of sample collection (if unpreserved); and all samples must be shipped on ice to the laboratory and stored at 4°C until analysis.

Holding times for all samples were met.

## 2.3 INSTRUMENT CALIBRATION AND TUNING

Instrument calibration is performed to establish that the GC/MS instrument is capable of producing acceptable and reliable analytical data over a range of concentrations. The initial and continuing calibrations are to be performed according to CLP protocols. An initial multipoint calibration is performed prior to sample analysis to establish the linear range of the GC/MS instrument. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

All initial and continuing calibration results were acceptable.

# 2.3.1 GC/MS Tuning/Instrument Performance Check

Tuning is performed to ensure that mass resolution, identification, and, to some degree, sensitivity of the GC/MS instrument have been established. When analyzing for volatile organics, instrument tuning is performed with BFB. Instrument

tuning must be performed prior to the analysis of either standards or samples and must meet the criteria for acceptable GC/MS instrument tuning using BFB as outlined in Westinghouse-Hanford (WHC 1991) and in EPA (EPA 1988a and 1988b) criteria.

The original data were checked for transcription and calculation errors to verify that tuning criteria were met. Prior to calibration and sample analysis, all tuning criteria were met.

All GC/MS tuning data are acceptable.

# 2.4 BLANKS

Method blank and field blank analyses are performed to determine the extent of laboratory or field contamination of samples. No contaminants should be present in the blanks. Analytical results for analytes present in any sample at less than 5 times the concentration of that analyte found in associated blanks should be qualified as non-detects; common laboratory contaminants present at less than 10 times the concentration of that analyte are qualified as non-detects.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for acetone:

- All samples associated with SDG No. B07Q52.
- All samples associated with SDG No. B07Q63.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for methylene chloride:

 Sample numbers B07Q63, B07Q64, B07Q65, B07Q66, B07Q68, B07Q69 and B07Q71 in SDG No. B07Q63.

All other laboratory blank results were acceptable.

# 2.5 ACCURACY

Pro college

Accuracy was assessed by evaluating the recoveries of stable isotopically labeled surrogate compounds added to all samples and blanks, and by the analysis of a representative sample which was spiked with a variety of volatile organic compounds.

# 2.5.1 Matrix Spike Recovery

Matrix spike compounds are added to a sample which is representative of the sample delivery group. Matrix spike analyses are performed in duplicate using five compounds and

should be within the established quality control limits (EPA 1988b). The matrix spike analyses estimate how much the target compounds are interfered with, either positively or negatively, by the sample matrix.

All MS/MSD results were acceptable.

# 2.5.2 Surrogate Recovery

Matrix-specific surrogate compound recovery control windows have been established by the EPA CLP program. When a surrogate compound recovery is out of the control window, all positively identified target compounds associated with the unacceptable surrogate recoveries are qualified as estimates (J). Undetected compounds are qualified as having an estimated detection limit. (UJ).

All surrogate recovery results are acceptable.

## 2.6 PRECISION

0

O

Precision is expressed by the relative percent difference (RPD) between the recoveries of duplicate matrix spike analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed using unspiked duplicate sample analyses. Field precision is measured by analyzing duplicate samples taken in the field.

All matrix spike/matrix spike duplicate RPD results were acceptable.

# 2.7 INTERNAL STANDARDS PERFORMANCE

Internal standard performance was assessed to determine whether abrupt changes in instrument response and sensitivity occurred that may have affected the reliability of the analytical data. The response (area or height) of the internal standards must not vary by more than 100 percent or -50 percent from the response of the internal standard that was used to calculate the upper and lower bounds. The upper and lower bounds define the range for acceptable internal standard response (area/height) for the sample analyses.

All internal standard recovery results were acceptable.

# 2.8 COMPOUND IDENTIFICATION AND QUANTITATION

The identity of detected compounds was confirmed to investigate the possibility of false positives. The confirmation

of compound identification during the quality assurance review focuses on false positives because only mass spectra for positive identifications are submitted. However, target compounds that are reported as undetected are also evaluated to investigate the possibility of false negatives. Confirmation of possible false negatives is addressed by reviewing other factors relating to analytical sensitivity (e.g., relative response factors, detection limits, linearity, analytical recovery).

Compound quantitations and reported detection limits were recalculated for a minimum of 20 percent of the samples in each case to verify that they are accurate and are consistent with CLP requirements.

Below the CRQL, instrument precision becomes more variable as the instrument detection limit is approached. Therefore, the concentration of any compound that was detected below the CRQL was qualified as an estimate (J).

The reported results and quantitation limits were verified as correct in all cases.

# 2.9 OVERALL ASSESSMENT AND SUMMARY

A thorough review of ongoing data acquisition and instrument performance criteria was made to assess overall GC/MS instrument performance. No changes in instrument performance were noted that would result in the degradation of data quality. No indications of unacceptable instrument performance (i.e., shifts in baseline stability, retention time shifts, extraneous peaks, or sensitivity) were found during the quality assurance review.

In general, the volatile data presented in this report met the protocol-specified QA/QC requirements. Minor blank contamination was detected in several samples. The data are considered valid and usable within the standard error associated with the method. All other results are considered to be acceptable and usable for all purposes.

| Project: WESTINGHOUSE-     | HANFO | RD       |   | 1        |     |          |          |          |          |          |   |          |   |          |          |          |    |          |          |          |          |
|----------------------------|-------|----------|---|----------|-----|----------|----------|----------|----------|----------|---|----------|---|----------|----------|----------|----|----------|----------|----------|----------|
| Laboratory: TMA            |       |          |   | 1        |     |          |          |          |          |          |   |          |   |          |          |          |    |          |          |          |          |
| Case                       | SDG:  | B07Q52   |   | 1        |     |          |          |          |          |          |   |          |   |          |          |          |    |          |          | •        |          |
| Sample Number              |       | B07Q52   |   | B07Q53   |     | B07Q55   |          | B07Q56   |          | B07Q57   |   | B07Q58   |   | B07Q59   |          | B07Q60   |    | B07Q61   |          | B07Q62   |          |
| Location                   |       | 120-N-   | 1 | 120-N-   | 1   | 120-N-   |          | 120-N-1  | 1        | 120-N-1  |   | 120-N-1  |   | 120-N-1  | <u> </u> | 120-N-1  | 1  | 120-N-1  | 1        | 120-N-1  |          |
| Remarks                    |       |          |   | DUP      |     | EB       |          |          |          | 1        |   | 1        |   | 1        |          |          |    | 100 10   |          | 1        | <u></u>  |
| Sample Date                |       | 12/09/92 | 2 | 12/09/92 | 5   | 12/09/92 | ?        | 12/09/92 | ?        | 12/09/92 | ) | 12/09/92 |   | 12/09/92 |          | 12/09/92 | •  | 12/09/92 | <u> </u> | 12/09/92 | <u>-</u> |
| Analysis Date              |       | 12/18/92 | 2 | 12/18/92 | 2   | 12/18/92 | ?        | 12/18/92 | <u> </u> | 12/18/92 |   | 12/18/92 | - | 12/18/92 |          | 12/18/92 | •  | 12/18/92 | 2        | 12/23/92 |          |
| Volatile Organic Compound  | CROL  |          | a | Result   | Q   | Result   | Q        | Result   | Q        | Result   | Q | Result   | Q | Result   | Q        | Result   | Q  | Result   | Q        | Result   | Q        |
| Chloromethane              | 10    | 11       | U | 11       | U   | 10       | U        | 11       | U        | 11       | Ū | 11       | U | 11       | U        | 10       | U  |          | U        |          | U        |
| Bromomethane               | 10    | 11       | U | 11       | U   | 10       | U        | 11       | U        | 11       | Ū | 11       | Ų | 11       | U        | 10       | U  | 11       | v        | 11       | U        |
| Vinyl Chloride             | 10    | 11       | U | 11       | U   | 10       | U        | 11       | Ū        | 11       | Ü | 11       | Ū | 11       | U        | 10       | U  | 11       | Ū        | 11       | U        |
| Chloroethane               | 10    | 11       | U | 11       | U   | 10       | U        | 11       | Ū        |          | Ü | 11       | Ū | 11       | U        | 10       | Ū  | 11       | Ū        | 11       | U.       |
| Methylene Chloride         | 10    |          | U | 11       | U   | 10       | U        | 11       | Ū        | 11       | U | 11       | U | 11       | U        | 10       | U  | 11       | Ū        | 11       | U        |
| Acetone                    | 10    | 13       | U | 11       | U   | 10       | U        | 16       | Ū        | 11       | U | 13       | Ū | 15       | U        | 17       | U  | 18       | Ū        | 11       | U        |
| Carbon Disulfide           | 10    | . 11     | U | 11       | U   | 10       | U        | 11       | U        | 11       | U | 11       | Ü | 11       | U        | 10       | Ū  | 11       | U.       | 11       | U        |
| 1,1-Dichloroethene         | 10    |          | U | 11       | U   | 10       | Ü        | 11       | U        | 11       | U | 11       | Ü | 11       | U        | 10       | U  | 11       | Ū.       | 11       | U        |
| 1,1-Dichloroethane         | 10    | 11       | U | 11.      | U   | 10       | U        | 11       | U        | 11       | U | 11       | Ü | 11       | U        | 10       | U  | 11       | U        | 11       | ĮŪ.      |
| 1,2-Dichloroethene (total) | 10    | 11       | U | 11       | U   | 10       | U        | 11       | U        | 11       | U | 11       | Ü | 11       | U        | 10       | U  | 11       | U        | 11       | U        |
| Chloroform                 | 10    |          | U | 11       | U   | 10       | Ü        | 11       | U        | 11       | U | 11       | Ü | 11       | U        | 10       | U  | 11       | U        | 11       | U        |
| 1,2-Dichloroethane         | 10    | 11       | U | 11       | U   | 10       | U        | 11       | U        | 11       | Ū | 11       | Ü | 11       | U        | 10       | U  | 11       | U        | 11       | Tu -     |
| 2-Butanone                 | 10    | 11       | U | 11       | U   | 10       | U        | 11       | U        |          | Ü |          | Ū | 11       | U        | 10       | U  | 11       | U        | 11       | Ū        |
| 1,1,1-Trichloroethane      | 10    |          | U | 11       | U   | 10       | כ        | 11       | U        | 11       | Ü | 11       | U | 11       | U        | 10       | U  | 11       | U        | 11       | Ū        |
| Carbon Tetrachioride       | 10    | 11       | U | 11       | U   | 10       | د        | 11       | U        | 11       | U |          | U | 11       | U        | 10       | U  | 11       | U        | 11       | U        |
| Vinyl Acetate              | 10    |          | U | 11       | U   | 10       | ح        | 11       | כ        | 1 ''     | U |          | U | 11       | U        | 10       | U  | 11       | U        | 11       | U        |
| Bromodichloromethane       | 10    |          | บ | 11       | U   | 10       | ے        | 11       | حا       | 11       | U | 11       | U | 11       | Ü        | 10       | U  | 11       | U        | 11       | U        |
| 1,2-Dichloropropane        | 10    | 11       | U | 11       | U   | 10       | <b>-</b> | 11       | כ        |          | U |          | U | 11       | Ü        | 10       | J  | 11       | U        | 11       | U        |
| cis-1,3-Dichloropropene    | 10    |          | U | 11       | U   | 10       | 2        | 11       | ح        |          | U |          | U | 11       | Ü        | 10       | U  | 11       | U        | 11       | U        |
| Trichloroethene            | 10    |          | U | 11       | U   | 10       | چ        | 11       | د        |          | Ų | 11       | U | 11       | Ü        | 10       | Ü  | 11       | U        | 11       | U        |
| Dibromochloromethane       | 10    |          | U | 11       | U   | 10       | ح        | 11       | د        |          | U |          | U | 11       | U        | 10       | U  | 11       | U        |          | U        |
| 1,1,2-Trichioroethane      | 10    | 11       | U | 11       | U   | 10       | ح        | 11       | د        |          | U | 11       | Ų | 11       | 2        | 10       | U  | 11       | U        | 11       | U        |
| Benzene                    | 10    | 11       | U | 11       | U   | 10       | 5        | 11       | ט        | ,        | U | 1        | J | 11       | J        | 10       | J  | 11       | J        | 11       | U        |
| trans-1,3-Dichloropropene  | 10    | 11       | U | 11       | υ   | 10       | J        | 11       | כ        |          | Ü |          | U | 11       | U        | 10       | U  | 11       | U        | 11       | U        |
| Bromoform                  | 10    | 11       | U | 11       | U   | 10       | 5        | 11       | ט        |          | U | 11       | U | 11       | U        | 10       | U  | 11       | U        | 11       | U        |
| 4-Methyl-2-pentanone       | 10    |          | U | 11       | ح   | 10       | اد       |          | ح        | 11       | Ų |          | U | 11       | U        | 10       | 5  | 11       | U        | 11       | U        |
| 2-Hexanone                 | 10    |          | U | 11       | ح   | 10       | כ        | 11       | _        | 11       | Ü |          | U | 11       | U        | 10       | U  | 11       | U        | 11       | U        |
| Tetrachloroethene          | 10    |          | U | 11       | ح   | 10       | 5        | 11       | Ü        | 11       | U | 11       | Ü | 11       | υ        | 10       | U  | 11       | U        | 11       | U        |
| 1,1,2,2-Tetrachloroethane  | 10    |          | Ū | 11       | 5   | 10       | Ü        |          | U        |          | U |          | Ü | 11       | ט        | 10       | حا |          | حا       |          | U        |
| Toluene                    | 10    | 7        | J | 8        | ر ا | 10       | U        |          | U        | ,,       | U |          | U | 11       | C        | 10       | 5  |          | اد       |          | U        |
| Chlorobenzene              | 10    | 11       | U |          | U   | 10       | U        | 11       | U        |          | U |          | U | 11       | Ü        | 10       | C  | 11       | U        | 11       | U        |
| Ethylbenzene               | 10    |          | J | 11       | Ü   | 10       | U        | . '' !   | U        | 11       | U | 11       | U | 11       | Ū        | 10       | U  |          | U        |          | U        |
| Styrene                    | 10    | 11       | כ | 11       | U   | 10       | U        |          | U        | 11       | U | 11       | Ū | 11       | U        | 10       | U  | 11       | U        | 11       | U        |
| Xylene (total)             | 10    | 11       | U | 11       | U   | 10       | Ü        | 11       | Ū        | 11       | Ū | 11       | Ü | 11       | U        | 10       | U  | 11       | U        | 11       | U        |
|                            |       |          |   |          |     |          |          |          |          |          |   |          |   |          | _        |          |    |          |          |          |          |

| Project: WESTINGHOUSE-H    | IANFO | RD       |           | 1                                                |          |                                                  |                                                  |                                                  |          |                                       |            |                                                  |            |               |              |                                                  |                                                  |                                                  |   |                                                  |                                                  |
|----------------------------|-------|----------|-----------|--------------------------------------------------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|---------------------------------------|------------|--------------------------------------------------|------------|---------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---|--------------------------------------------------|--------------------------------------------------|
| Laboratory: TMA            |       |          |           | 1                                                |          |                                                  |                                                  |                                                  |          |                                       |            |                                                  |            |               |              |                                                  |                                                  |                                                  |   |                                                  |                                                  |
| Case                       | SDG:  | B07Q52   |           | †                                                |          |                                                  |                                                  |                                                  |          |                                       |            |                                                  |            |               |              |                                                  |                                                  |                                                  |   |                                                  |                                                  |
| Sample Number              |       | B07Q62   | <u>.T</u> | <del>                                     </del> | -        |                                                  |                                                  | [                                                |          |                                       |            | T                                                |            |               |              | T                                                |                                                  | ľ                                                |   | $\overline{}$                                    |                                                  |
| Location                   |       | 120-N-   |           | <del>                                     </del> |          |                                                  |                                                  | <del>                                     </del> |          | -                                     |            | <del>                                     </del> |            |               | -            | -                                                |                                                  | 1                                                |   |                                                  |                                                  |
| Remarks                    |       |          |           | <del> </del> -                                   |          | <del>                                     </del> |                                                  | <del>                                     </del> |          | ·                                     |            | <del> </del>                                     |            |               |              | <del> </del>                                     |                                                  |                                                  |   | <del></del>                                      |                                                  |
| Sample Date                |       | 12/09/92 | 2         |                                                  |          | <del> </del>                                     |                                                  | <del>                                     </del> |          |                                       |            | † <del></del>                                    |            |               |              | <del>                                     </del> |                                                  | <del> </del>                                     |   |                                                  |                                                  |
| Analysis Date              |       | 12/23/92 | 2         | <del>                                     </del> |          | <del>                                     </del> |                                                  | <del>                                     </del> |          |                                       |            | t                                                |            | <del> </del>  |              | <del>                                     </del> | _                                                |                                                  |   |                                                  |                                                  |
| Volatile Organic Compound  | CROL  | Result   | Q         | Result                                           | Q        | Result                                           | Q                                                | Result                                           | Q        | Result                                | Q          | Result                                           | Q          | Result        | Q            | Result                                           | Q                                                | Result                                           | Q | Result                                           | Q                                                |
| Chioromethane              | 10    | 11       | U         | <b>1</b>                                         | †===     |                                                  | † <u> </u>                                       |                                                  |          |                                       | T          |                                                  |            |               |              |                                                  | 1                                                |                                                  |   |                                                  | 1                                                |
| Bromomethane               | 10    | 11       | ΙU        | <del>                                     </del> | t        | <del> </del>                                     | 1-                                               |                                                  | 1        |                                       | $\vdash$   | <del>                                     </del> |            | · · ·         | <del> </del> | <del></del>                                      | 1                                                | <del>                                     </del> | 1 |                                                  | 1                                                |
| Vinyl Chloride             | 10    | 11       | U         | <u> </u>                                         | 1        |                                                  | <del>                                     </del> |                                                  |          |                                       | <b>—</b>   | <del>                                     </del> | 一          |               |              | <del>                                     </del> | †-                                               |                                                  | T | ·                                                | 十                                                |
| Chloroethane               | 10    | 11       | U         | 1                                                | 1        | ļ                                                | 一                                                |                                                  | t        |                                       | 1          |                                                  |            |               |              |                                                  | <del>                                     </del> |                                                  | 1 | 1                                                | $\top$                                           |
| Methylene Chloride         | 10    | 11       | U         |                                                  |          | 1                                                | 1                                                |                                                  |          |                                       | 1          | $\overline{}$                                    | Г          |               | $\Box$       |                                                  | †                                                |                                                  |   | <del>                                     </del> | 1                                                |
| Acetone                    | 10    | 11       | U         | 1                                                | t        |                                                  | 1                                                | <del></del> -                                    | t        |                                       | 1          | $\overline{}$                                    | Γ          | <del></del>   | $\Box$       | t —                                              | t                                                |                                                  | 1 | 1                                                | $\top$                                           |
| Carbon Disulfide           | 10    | 11       |           | 1                                                |          | 1                                                | 1                                                |                                                  | Г        |                                       | 1          |                                                  |            | $\overline{}$ | T            | <del>                                     </del> | †                                                |                                                  | Π |                                                  | $\top$                                           |
| 1,1-Dichloroethene         | 10    | 11       |           |                                                  | Ī        | 1                                                | T                                                |                                                  |          |                                       | 1          | 1                                                | $\vdash$   |               |              |                                                  | 1                                                |                                                  |   |                                                  | $\top$                                           |
| 1,1-Dichloroethane         | 10    | 11       | lυ~       |                                                  | 1        |                                                  | 1                                                | <del>                                     </del> |          |                                       | 1          |                                                  |            |               |              |                                                  | 1                                                |                                                  |   |                                                  | 十                                                |
| 1,2-Dichloroethene (total) | 10    | 11       | U         | <b>—</b> ———————————————————————————————————     | 1        |                                                  | <b>†</b>                                         |                                                  | T        |                                       | 1          | <del>                                     </del> | <u> </u>   |               | t            |                                                  | †                                                | -                                                | 1 |                                                  | $\top$                                           |
| Chloroform                 | 10    | 11       | U         |                                                  |          |                                                  | 1                                                |                                                  |          |                                       | 1          |                                                  | <b>—</b>   |               | T            |                                                  | †-                                               |                                                  |   |                                                  | 1                                                |
| 1,2-Dichloroethane         | 10    | 11       | Ū         |                                                  |          |                                                  | <u> </u>                                         |                                                  | i –      |                                       | 1-         |                                                  | <b>├</b> ─ |               |              |                                                  | †-                                               |                                                  |   |                                                  | _                                                |
| 2-Butanone                 | 10    | 11       | U         |                                                  | Ì        | T                                                | <del>                                     </del> |                                                  |          |                                       | 1          |                                                  |            |               |              |                                                  | T                                                |                                                  |   |                                                  | 1                                                |
| 1,1,1-Trichloroethane      | 10    | 3        | J         |                                                  | 1        |                                                  | <u>├</u>                                         |                                                  |          |                                       | 1          |                                                  | <b>ऻ</b>   |               |              |                                                  | 1                                                |                                                  | 1 |                                                  | <del>                                     </del> |
| Carbon Tetrachloride       | 10    | 11       | U         |                                                  |          | 1                                                |                                                  |                                                  |          |                                       |            | <del></del>                                      | $\vdash$   |               |              |                                                  | <b>†</b> ⁻                                       |                                                  |   |                                                  | $\top$                                           |
| Vinyl Acetate              | 10    | 11       | U         |                                                  | Î        | T                                                | 厂                                                | 1                                                | 1        |                                       | <b>T</b>   |                                                  | $\Box$     |               |              | <del>                                     </del> | 1                                                |                                                  | T |                                                  | $\top$                                           |
| Bromodichloromethane       | 10    | 11       | U         | 1                                                | 1        |                                                  | $T^-$                                            |                                                  | 1        |                                       | 1          |                                                  | $\Box$     | $\vdash$      |              | t                                                | 1                                                |                                                  |   |                                                  | 1-                                               |
| 1,2-Dichloropropane        | 10    |          | U         |                                                  |          |                                                  | Γ                                                |                                                  |          |                                       | T_         |                                                  | $\Box$     |               |              |                                                  |                                                  |                                                  | T |                                                  | T                                                |
| cls-1,3-Dichloropropene    | 10    | 11       |           |                                                  | Ì        |                                                  | ┌┈                                               |                                                  |          |                                       | 1          | 1                                                | $\Box$     |               |              |                                                  |                                                  |                                                  |   |                                                  | $\top$                                           |
| Trichloroethene            | 10    |          | Ū         |                                                  |          |                                                  | T                                                |                                                  |          |                                       | Т          |                                                  | Г          |               |              |                                                  | Τ_                                               |                                                  |   |                                                  | 1.                                               |
| Dibromochioromethane       | 10    | 11       | U         | ļ                                                |          |                                                  | T                                                |                                                  | $\vdash$ |                                       | ⇈          | T                                                | Γ-         | <u> </u>      |              |                                                  | Τ                                                |                                                  |   |                                                  | 7                                                |
| 1,1,2-Trichloroethane      | 10    | 11       | U         |                                                  |          |                                                  | 1                                                |                                                  |          |                                       | Т          |                                                  |            |               |              |                                                  | 1                                                |                                                  |   |                                                  | 1.                                               |
| Benzene                    | 10    | 1        | U         |                                                  |          |                                                  |                                                  |                                                  |          |                                       |            | <u> </u>                                         | Ī          | 1             |              |                                                  | Γ                                                |                                                  |   |                                                  | 1                                                |
| trans-1,3-Dichloropropene  | 10    | 11       | U         |                                                  |          |                                                  | Γ                                                | <u> </u>                                         |          |                                       | Г          |                                                  |            |               |              | 1                                                | Γ                                                | · · · · · · · · · · · · · · · · · · ·            |   | <u> </u>                                         | $\top$                                           |
| Bromotorm                  | 10    |          | U         |                                                  | <u> </u> |                                                  | Γ                                                |                                                  |          |                                       | $\Gamma^-$ |                                                  | Г          |               |              | Γ                                                |                                                  | ]                                                | Г |                                                  | T                                                |
| 4-Methyl-2-pentanone       | 10    |          | U         |                                                  |          | T                                                | Γ                                                |                                                  |          |                                       | Π          |                                                  | Γ          |               |              |                                                  | Π                                                |                                                  |   |                                                  | T                                                |
| 2-Hexanone                 | 10    | 1        | Ü         |                                                  |          | 1                                                | <u> </u>                                         |                                                  |          |                                       | Π          |                                                  |            |               |              |                                                  |                                                  |                                                  |   |                                                  | 1                                                |
| Tetrachloroethene          | 10    | 11       |           |                                                  |          |                                                  | Γ                                                |                                                  |          |                                       |            |                                                  |            |               |              |                                                  | Γ                                                |                                                  |   |                                                  | 1                                                |
| 1,1,2,2-Tetrachloroethane  | 10    |          | U         |                                                  | Γ        |                                                  | Γ                                                |                                                  |          |                                       | Τ          |                                                  | Г          | <u> </u>      | Ϊ            |                                                  | Г                                                |                                                  |   |                                                  | T                                                |
| Toluene                    | 10    | 11       | U         | <u> </u>                                         |          | ļ                                                | Γ                                                |                                                  |          |                                       | Γ          |                                                  |            |               | Γ            |                                                  | Γ                                                | J                                                |   |                                                  | $\top$                                           |
| Chlorobenzene              | 10    | 11       | U         |                                                  |          | T                                                | Γ                                                | <u> </u>                                         |          |                                       | Γ.         |                                                  |            |               |              |                                                  | Γ                                                |                                                  |   |                                                  | T                                                |
| Ethylbenzene               | 10    | 11       | U         | <del></del>                                      |          |                                                  |                                                  |                                                  |          | · · · · · · · · · · · · · · · · · · · | 1          |                                                  |            |               |              |                                                  |                                                  | ļ ———                                            |   |                                                  | T                                                |
| Styrene                    | 10    |          | U         |                                                  |          |                                                  | _                                                |                                                  |          |                                       |            |                                                  |            |               |              |                                                  | Γ                                                |                                                  | Π |                                                  | T                                                |
| Xylene (total)             | 10    |          | lu "      |                                                  | Г        |                                                  |                                                  |                                                  |          |                                       | t          | T                                                |            |               |              | <del></del>                                      | $\overline{}$                                    |                                                  |   | <del>                                     </del> | 1                                                |

# :-SD-EN-TI-157, Rev. (

# **BLANK AND SAMPLE DATA SUMMARY**

| SDG:B07Q52                            | REVIEWER: RB |             | • . :    | DAT | E: 4/16/9                                    | 3            | -                                            | PAGE_1              | OF 1                                  |
|---------------------------------------|--------------|-------------|----------|-----|----------------------------------------------|--------------|----------------------------------------------|---------------------|---------------------------------------|
| COMMENTS:                             |              | <del></del> |          | ·L, |                                              | ·- <u></u>   | <u>.                                    </u> |                     |                                       |
| SAMPLE ID                             | COMPOUND     | RESULT      | Q        | RT  | UNITS                                        | 5X<br>RESULT | 10X<br>RESULT                                | SAMPLES<br>AFFECTED | QUALIFIER                             |
| VBLK                                  | Acetone      | 17          |          |     | ug/kg                                        | 85           | 170                                          | All                 | U                                     |
|                                       |              |             |          |     |                                              |              |                                              |                     |                                       |
|                                       |              |             |          |     |                                              |              |                                              |                     |                                       |
|                                       |              |             |          |     |                                              |              |                                              |                     |                                       |
|                                       |              |             |          |     |                                              |              |                                              |                     |                                       |
|                                       |              |             |          |     |                                              |              |                                              |                     |                                       |
|                                       |              |             | ļ        |     |                                              |              |                                              |                     |                                       |
|                                       | W            |             | <u> </u> |     | <u>.                                    </u> |              |                                              |                     |                                       |
|                                       |              |             |          |     |                                              |              |                                              |                     |                                       |
|                                       |              |             |          |     |                                              |              |                                              |                     | 4                                     |
|                                       |              |             |          |     |                                              |              |                                              |                     | : •                                   |
|                                       |              |             |          |     |                                              |              |                                              |                     |                                       |
|                                       |              |             |          |     |                                              |              |                                              | 1864.00             | · · · · · · · · · · · · · · · · · · · |
| · · · · · · · · · · · · · · · · · · · | <u> </u>     |             |          |     |                                              |              |                                              | ,                   | 4                                     |
|                                       |              |             |          |     |                                              | <del></del>  |                                              |                     |                                       |
|                                       |              |             |          |     |                                              |              | · .                                          | <u> </u>            |                                       |

| ODG DOSOS   | DELIEUR DE   |                     |                            |
|-------------|--------------|---------------------|----------------------------|
| SDG: B07Q52 | REVIEWER: RB | DATE: 4/16/93       | PAGE 1 OF 1                |
| COMMENTS:   |              |                     |                            |
| COMPOUND    | QUALIFIER    | SAMPLES<br>AFFECTED | REASON                     |
| Acetone     | U            | All                 | Lab Blank<br>Contamination |
|             |              |                     |                            |
| · · ·       |              | •                   |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              |                     |                            |
|             |              | <u> </u>            |                            |

| Project: WESTINGHOUSE-I    | IANFO  | 3D       |           | 1        |   |          |   |          |            |          |          |          |          |          |            |          |     |          |            |          |    |
|----------------------------|--------|----------|-----------|----------|---|----------|---|----------|------------|----------|----------|----------|----------|----------|------------|----------|-----|----------|------------|----------|----|
| Laboratory: TMA            |        |          |           |          |   |          |   |          |            |          |          |          |          |          |            |          |     |          |            |          |    |
| Case                       | SDG: I | B07Q63   |           |          |   |          |   | •        |            |          |          |          |          |          |            |          |     |          |            |          | _  |
| Sample Number              |        | B07Q63   |           | B07Q64   |   | B07Q65   |   | B07Q66   |            | B07Q68   |          | B07Q69   |          | B07Q71   |            | B07Q72   |     | B07Q73   |            | B07Q75   | ]  |
| Location                   |        | 120-N-1  | 1         | 120-N-1  |   | 120-N-   | 1 | 120-N-1  | )          | 120-N-1  |          | 120-N-1  |          | 120-N-1  |            | 120-N-   | 1   | 120-N-1  |            | 120-N-1  | _[ |
| Remarks                    |        | EB       |           |          |   |          |   |          |            |          |          |          |          |          |            | DUP      |     |          |            | ТВ       | _[ |
| Sample Date                |        | 12/18/92 |           | 12/18/92 | ? | 12/18/92 | 2 | 12/18/92 |            | 12/18/92 | !        | 12/18/92 |          | 12/18/92 | ;          | 12/18/92 |     | 12/18/92 |            | 12/18/92 | ]  |
| Analysis Date              |        | 12/28/92 | 2         | 12/28/92 | ! | 12/28/92 | 2 | 12/28/92 |            | 12/28/92 | !        | 12/28/92 |          | 12/28/92 | }          | 12/23/92 | 2   | 12/23/92 |            | 12/23/92 | ┚  |
| Volatile Organic Compound  | CRQL.  | Result   | Q         | Result   | Q | Result   | Q |          | Q          |          | a        |          | Q        | Result   | a          |          | Q   | Result   | Q          | Result Q | ╽  |
| Chloromethane              | 10     | 10       | Ū         | 10       | J | 10       | Ū | 10       | U          |          | >        | 10       | U_       | 11       | 5          |          | U   | 11       | U          | 10 U     | 1  |
| Bromomethane               | 10     |          | V         | 10       | U | 10       | Ü | 10       | U          |          | ے        |          | Ü        | 11       | ح          | 11       | U   | 11       | U          | 10 U     | ┛  |
| Vinyi Chloride             | 10     | 10       | U         | 10       | U | 10       | U | 10       | U          |          | 5        |          | U        | 11       | J          | 11       | U   | 11       | Ų          | 10 U     | ╛  |
| Chloroethane               | 10     | 10       | U         | 10       | Ū | 10       | U | 10       | U          |          | ح        |          | Ū        |          | כ          | 11       | Ü   | 11       | U          | 10 U     | 1  |
| Methylene Chloride         | 10     | 10       | U         | 10       | U | 10       | U | 10       | U          |          | U        | 1 1      | U        | 11       | U          | 11       | U   | 2        | IJ.        | 10 U     | 1  |
| Acetone                    | 10     | 20       | U         | 17       | U | 17       | U | 14       | U          |          | J        |          | U        | 23       | U          | 13       | U   | 16       | U          | 10 U     | 1  |
| Carbon Disulfide           | 10     | 10       | U         | 10       | Ų | 10       | U | 14       | U          |          | U        |          | U        | 11       | U          | 11       | U   | 11       | U          | 10 U     | 1  |
| 1,1-Dichloroethene         | 10     | 10       | U         | 10       | U | 10       | _ | 14       | U          | , , ,    | U        |          | <u>U</u> | 11       | U          |          | U   | 11       | U          | 10 U     | 4  |
| 1,1-Dichloroethane         | 10     | 10       | U         | 10       | Ü | 10       | U | 14       | U          | 19       | <u>u</u> |          | U        | 11       | <u>u</u>   | 11       | U   | 11       | U          | 10 U     | 4  |
| 1,2-Dichloroethene (total) | 10     | 10       | U         | 10       | U | 10       | U | 14       | U          |          | U        |          | U        | 11       | U          | 11       | U   | 11       | U          | 10 U     | 4  |
| Chloroform                 | 10     | 3        | J         | 2        | J | 2        | J | 2        | J          | 2        | J        |          | J        | 2        | J          | • • •    | U   | 11       | U          | 10 U     | 4  |
| 1,2-Dichloroethane         | 10     | 10       | U         | 10       | U | 10       |   | 10       | U          |          | U        | 1        | U        | 11       | U          | 11       | U   | 11       | U          | 10 U     | 4  |
| 2-Butanone                 | 10     | 10       | U         | 10       | U | 10       |   | 10       | U          |          | U        |          | U        | 11       | U          |          | u   | 11       | U          | 10 U     | 4  |
| 1,1,1-Trichloroethane      | 10     | 10       |           | 10       | U | 10       |   | 10       |            |          | U        |          | U        | 11       | U          |          | U   | 11       | U          | 10 U     | 4  |
| Carbon Tetrachioride       | 10     | 10       | U         | 10       | U | 10       | U | 10       | U          |          | U        |          | U        | 11       | U          | 11       | U   | 11       | U          | 10 U     | 4  |
| Vinyl Acetate              | 10     | 10       | U         | 10       | U | 10       | U | 10       | U          |          | U.       | 1        | U        | 11       | U          | 11       | U   | 11       | U          | 10 U     | 4  |
| Bromodichloromethane       | 10     | 10       | U         | 10       | U | 10       |   | 10       | ļ <u>u</u> | 10       | _        |          | U        | 11       | U          | 11       | ļu  | 11       | U          |          | 4  |
| 1,2-Dichloropropane        | 10     | 10       |           | 10       | U | 10       | Ü | 10       | U          | 1        | U        |          | <u>u</u> | 11       | U          | 11       | U   | 11       |            | 10 U     | 4  |
| cis-1,3-Dichloropropene    | 10     | 10       | U         | 10       | U | 10       | U | 10       | U_         |          | U        |          | U        | 11       | ļ <u>u</u> | 11       | n   | 11       | U          |          | 4  |
| Trichloroethene            | 10     | 10       |           | 10       | U | 10       |   | 10       | ٠          | 10       | _        |          | U        | 11       | U          | 11       | n   | 11       | U          | 10 U     | ┥  |
| Dibromochloromethane       | 10     | 10       | U         | 10       | U | 10       |   | 10       | U          | 10       | U        |          | U        | 11       | Ü          | 11       | li. | 11       | U          | <u> </u> | ┥  |
| 1,1,2-Trichloroethane      | 10     | 10       | U         | 10       | U | 10       | 1 | 10       | U          | 10       | U        | , , , ,  | <u>u</u> | 11       | <u> U</u>  | 11       | U   | 11       | U          |          | 4  |
| Benzene                    | 10     | 10       |           | 10       | U | 10       |   | 10       | U          | 10       |          | 1 1      | U        |          | U          | 11       | u   | 11       | ļ <u>u</u> | 100      | 4  |
| trans-1,3-Dichloropropene  | 10     | 10       | U         | 10       | U | 10       |   | 10       | U          | 10       |          |          | U        | 11       | U          | 11       | U   | 11       | U          | 1        | 4  |
| Bromoform                  | 10     | 10       | U         | 10       | Ü | 10       |   | 10       | <u>U</u>   | 10       | _        |          | U        | 11       | U          | 11       | U   | 11       | U          | 1        | 4  |
| 4-Methyl-2-pentanone       | 10     | 10       | <u>lu</u> | 10       | U | 10       |   | 10       | U          | 10       |          |          | U        | 11       | U          | 11       | U   | 11       | U          | 10 U     | 4  |
| 2-Hexanone                 | 10     | 10       | U         | 10       | U | 10       |   | 10       | U          | 10       |          |          | U        | 11       | U          | 11       | Ü   | 11       | U          |          | 4  |
| Tetrachloroethene          | 10     | 10       | U         | 10       | U | 10       |   | 10       | U          | 10       |          |          | U        | 11       | U          | 11       | U   | 11       | U          | 10 U     | 4  |
| 1,1,2,2-Tetrachloroethane  | 10     | 10       | U         | 10       | U | 10       |   | 10       | U          | 10       | U        |          | U        | 11       | U          | 11       | U   | 11       | U          | 10 U     | 4  |
| Toluene                    | 10     | 10       | 1         | 10       | U | 10       |   | 10       | Įυ         | 10       | 1        |          | U        | 11       | U          | 1        | J   | 2        | J          | 10 U     | 4  |
| Chlorobenzene              | 10     | 10       | U         | 10       | U | 10       |   | 10       | ĮΨ         | 10       | _        |          | U        | 11       | U          | 11       |     | 11       | U          | 10 U     | 4  |
| Ethylbenzene               | 10     | 10       | U         | 10       | U | 10       |   | 10       | ΙŪ         | 10       |          |          | U        | 11       | U          | 11       | U   | 11       | U          | <u> </u> | 4  |
| Styrene                    | 10     | 10       | U         | 10       | U | 10       |   | 10       | ĮΨ         | 10       |          |          | Ü        | 11       | U          | 11       | U   | 11       | υ          | 10 U     | 4  |
| Xylene (total)             | 10     | 10       | U         | 10       | U | 10       | U | 10       | Įυ         | 10       | U        | 10       | U        | 11       | U          | 11       | U   | 11       | U          | 10 U     | j  |

| Project: WESTINGHOUSE-I    | HANFO | RD.      |   | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  | •                                                |                                                  |                                                  |                   |                                                  |                                                  |                                                  |                                                  |
|----------------------------|-------|----------|---|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Laboratory: TMA            |       |          |   | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |                                                  |                                                  |
| Case                       | SDG:  | B07Q63   |   | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |                                                  |                                                  |
| Sample Number              |       | B07Q76   |   | <del>                                     </del> |                                                  | Τ-                                               |                                                  |                                                  |                                                  | Γ                                                |                                                  | <del></del>                                      |                                                  | Ī                                                |                                                  | Г                                                |                   | <del></del>                                      |                                                  | T                                                |                                                  |
| Location                   |       | 120-N-   |   | <del>                                     </del> |                                                  | <del> </del>                                     |                                                  | <del> </del>                                     |                                                  | <del> </del>                                     |                                                  | <del> </del>                                     |                                                  | <del>                                     </del> |                                                  | <del>                                     </del> |                   |                                                  |                                                  | <b> </b>                                         |                                                  |
| Remarks                    |       | ТВ       | • | <del>                                     </del> |                                                  | <del> </del>                                     |                                                  | <del> </del>                                     |                                                  |                                                  |                                                  |                                                  |                                                  | <del>                                     </del> |                                                  | <del> </del>                                     |                   | · · · · · · · · · · · · · · · · · · ·            |                                                  | ļ                                                |                                                  |
| Sample Date                |       | 12/18/92 | 2 | <del> </del>                                     |                                                  | <del> </del>                                     |                                                  | <del> </del>                                     |                                                  | <del>                                     </del> |                                                  |                                                  |                                                  | -                                                |                                                  | <del> </del>                                     |                   |                                                  |                                                  |                                                  |                                                  |
| Analysis Date              |       | 12/23/92 |   | <del> </del>                                     |                                                  | <del> </del>                                     |                                                  | <del> </del>                                     |                                                  | <del></del>                                      |                                                  |                                                  |                                                  |                                                  |                                                  | <del> </del>                                     |                   |                                                  |                                                  |                                                  |                                                  |
|                            | CROL. | 1        | _ | Result                                           | Q                                                | Result                                           | Q                                                | Result                                           | a                                                | Result                                           | Q                                                | Result                                           | Q                                                | Result                                           | Q                                                | Result                                           | Q                 | Result                                           | Q                                                | Result                                           | Q                                                |
| Chloromethane              | 10    | 10       |   |                                                  | +-                                               | 1                                                | ╁═╴                                              |                                                  | ┡                                                |                                                  | ╀═╌                                              |                                                  | F                                                | 110000                                           | ┞                                                | 1100011                                          | <u> </u>          | 1100011                                          | -                                                | HOOGIA                                           | -                                                |
| Bromomethane               | 10    | 10       |   | <b></b>                                          | ┼─                                               |                                                  | <del> </del>                                     | <u> </u>                                         | i –                                              | <del></del>                                      | ╁                                                |                                                  | ┪                                                | <del>                                     </del> | ╂╼╾                                              |                                                  | <del> .    </del> |                                                  | $\vdash$                                         |                                                  | ╫                                                |
| Vinyl Chloride             | 10    | 10       |   |                                                  | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     | <del>                                     </del> |                                                  | <del>                                     </del> | ╂━                                               |                                                  | H                                                | <del>                                     </del> | <del> </del>                                     |                                                  | ╁                 |                                                  | -                                                | -                                                | +                                                |
| Chioroethane               | 10    | 10       | U | 1                                                |                                                  | <del>                                     </del> | <del> </del>                                     |                                                  | l                                                | <del>                                     </del> | +                                                |                                                  |                                                  | <del>                                     </del> | <del> </del>                                     |                                                  | ┼                 | <del>                                     </del> | 1                                                |                                                  | +                                                |
| Methylene Chloride         | 10    | 10       |   | ļ                                                | <del>                                     </del> | <del>                                     </del> | †                                                |                                                  | t                                                | <del>                                     </del> | +                                                | <del>                                     </del> | I                                                | <del>                                     </del> | _                                                | <del> </del>                                     | <del> </del>      |                                                  | $\vdash$                                         | <del>                                     </del> | ┿                                                |
| Acetone                    | 10    | 11       | Ü | · · · · ·                                        | <del>                                     </del> | <u> </u>                                         | <del>                                     </del> |                                                  | T                                                |                                                  | <del> </del>                                     | <del>                                     </del> | $\vdash$                                         | <del>                                     </del> | 1                                                | <del>                                     </del> | 1-                | <del> </del>                                     | $\vdash$                                         | <del>                                     </del> | +                                                |
| Carbon Disulfide           | 10    |          | Ū |                                                  | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> | 1                                                |                                                  | <del>                                     </del> | <del> </del>                                     | <u> </u>                                         | $\vdash$                                         | <del>                                     </del> | -                                                |                                                  | +-                | <del> </del>                                     | -                                                | <del> </del>                                     | +                                                |
| 1,1-Dichioroethene         | 10    | 10       | Ū |                                                  | <del>                                     </del> | -                                                | ╁                                                | 1                                                | <del>                                     </del> | <del> </del>                                     | 1-                                               | <del> </del>                                     | $\vdash$                                         | <del>                                     </del> | -                                                | <del> </del>                                     | ╁╌                | <del> </del> -                                   | ├-                                               | <del>                                     </del> | +-                                               |
| 1,1-Dichloroethane         | 10    | 10       | Ü | <u> </u>                                         | <del>                                     </del> |                                                  | 1-                                               |                                                  | <del>                                     </del> |                                                  | <del> </del>                                     | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | 1                                                | <del>                                     </del> | <del> </del>      | <del> </del>                                     | ┢                                                | <del>                                     </del> | ╁                                                |
| 1,2-Dichloroethene (total) | 10    | 10       | U | <del>                                     </del> | <del>                                     </del> | 1                                                | 1                                                |                                                  | ┢                                                |                                                  | <del> </del>                                     |                                                  | $\vdash$                                         |                                                  | -                                                | <del>                                     </del> | <del> </del>      | <del> </del>                                     | ┢                                                |                                                  | ╫                                                |
| Chloroform                 | 10    | 10       | Ū |                                                  | <del>                                     </del> | <del>                                     </del> | 1-                                               |                                                  |                                                  |                                                  | 1-                                               |                                                  |                                                  | <del> </del>                                     | $\vdash$                                         | <del> </del>                                     | <del> </del>      |                                                  |                                                  | <b>-</b>                                         | ╁┈                                               |
| 1,2-Dichloroethane         | 10    | 10       | U |                                                  | 1                                                | <del></del>                                      | 1-                                               | 1                                                |                                                  | <del>                                     </del> | †                                                |                                                  |                                                  | <u> </u>                                         | ╅━                                               |                                                  | ╁┈                |                                                  | H                                                |                                                  | ┼┈                                               |
| 2-Butanone                 | 10    | 10       | Ü |                                                  |                                                  |                                                  | <b>†</b>                                         |                                                  |                                                  |                                                  | 1-                                               |                                                  |                                                  |                                                  | ┪                                                |                                                  | <del> </del>      | 1                                                | ┢                                                |                                                  |                                                  |
| 1,1,1-Trichloroethane      | 10    | 10       | Ü |                                                  | 1                                                |                                                  | 1                                                | 1                                                |                                                  |                                                  | 1                                                |                                                  |                                                  |                                                  | <del> </del> -                                   | <del>                                     </del> | $\vdash$          |                                                  |                                                  |                                                  | +                                                |
| Carbon Tetrachloride       | 10    | 10       | U |                                                  | 1                                                | <u> </u>                                         | 1                                                | 1                                                |                                                  |                                                  | <del>                                     </del> |                                                  |                                                  |                                                  | <del>                                     </del> | <u> </u>                                         | $\vdash$          |                                                  | ╁                                                |                                                  | +                                                |
| Vinyl Acetate              | 10    | 10       | Ū | 1                                                | <del>                                     </del> | <u> </u>                                         | 1-                                               | 1                                                |                                                  |                                                  | 1                                                |                                                  |                                                  |                                                  | 1                                                |                                                  | t                 |                                                  | ╁                                                |                                                  | 1                                                |
| Bromodichloromethane       | 10    | 10       | U | 1                                                | $\vdash$                                         | · · · · · ·                                      | 1                                                |                                                  |                                                  |                                                  | <del>                                     </del> |                                                  |                                                  |                                                  | 1                                                |                                                  | 1                 |                                                  | -                                                |                                                  | t                                                |
| 1,2-Dichloropropane        | 10    | 10       | U | <u> </u>                                         |                                                  | 1                                                | 1                                                |                                                  |                                                  |                                                  | <del>                                     </del> |                                                  |                                                  |                                                  |                                                  |                                                  | <b>!</b>          |                                                  | <del>                                     </del> |                                                  | T                                                |
| cis-1,3-Dichioropropene    | 10    |          | U | 1                                                |                                                  | i                                                | <b>†</b>                                         |                                                  |                                                  |                                                  | <b>†</b>                                         |                                                  |                                                  |                                                  | 1                                                | <b>-</b>                                         | t                 |                                                  |                                                  |                                                  | ┼┈                                               |
| Trichloroethene            | 10    | 10       |   |                                                  | <b>†</b> —                                       | <u> </u>                                         | <del>                                     </del> |                                                  |                                                  |                                                  | <del> </del>                                     |                                                  |                                                  | ····                                             | <del>                                     </del> |                                                  |                   |                                                  |                                                  |                                                  | <del>                                     </del> |
| Dibromochloromethane       | 10    | 10       |   |                                                  | <u> </u>                                         |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  | <del>                                     </del> | <b>-</b>                                         | <b>-</b>          |                                                  |                                                  |                                                  | ┰                                                |
| 1,1,2-Trichloroethane      | 10    | 10       |   |                                                  | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                  | <b>†</b>                                         |                                                  |                                                  |                                                  |                                                  | <b> </b>                                         | Т                 |                                                  | <u> </u>                                         |                                                  | <del> </del>                                     |
| Benzene                    | 10    | 10       | U |                                                  |                                                  | l                                                |                                                  |                                                  |                                                  |                                                  | 1                                                |                                                  |                                                  |                                                  |                                                  | <del></del>                                      | $\vdash$          | <del>                                     </del> | Г                                                |                                                  | †                                                |
| trans-1,3-Dichloropropene  | 10    |          | 5 |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  | T                                                |                                                  |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  | -                                                | †                                                |
| Bromoform                  | 10    | 10       |   |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  | <b> </b>                                         |                                                  |                   |                                                  |                                                  |                                                  | <del>                                     </del> |
| 4-Methyl-2-pentanone       | 10    | 10       |   |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |                                                  | 1                                                |
| 2-Hexanone                 | 10    | 10       |   | <u> </u>                                         |                                                  |                                                  |                                                  | <u> </u>                                         | П                                                |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  | Т                 | <del>                                     </del> |                                                  | <b>.</b>                                         | 1                                                |
| Tetrachloroethene          | 10    | 10       |   |                                                  |                                                  |                                                  | Г                                                |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                   | <b> </b>                                         |                                                  |                                                  | 1                                                |
| 1,1,2,2-Tetrachloroethane  | 10    | 10       |   |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                   |                                                  |                                                  |                                                  | <del> </del>                                     |
| Toluene                    | 10    | 10       | U |                                                  |                                                  |                                                  | $\Box$                                           |                                                  | $\Box$                                           |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                   | <u> </u>                                         |                                                  |                                                  | 1                                                |
| Chlorobenzene              | 10    | 10       | U |                                                  |                                                  |                                                  | <b>1</b>                                         |                                                  | $\Box$                                           |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  | -                                                |                   |                                                  |                                                  |                                                  | 1                                                |
| Ethylbenzene               | 10    | 10       | U |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  | $\vdash$                                         |                                                  |                   | <u> </u>                                         |                                                  | <del></del>                                      | <del>                                     </del> |
| Styrene                    | 10    |          | U |                                                  |                                                  |                                                  | 1                                                |                                                  |                                                  |                                                  | 1                                                |                                                  |                                                  |                                                  | H                                                |                                                  |                   |                                                  |                                                  |                                                  | <del>                                     </del> |
| Xylene (total)             | 10    | 10       | U |                                                  |                                                  |                                                  | <u> </u>                                         |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                   | <u> </u>                                         | <b></b>                                          |                                                  | 1                                                |

# **BLANK AND SAMPLE DATA SUMMARY**

| SDG:B07Q63 | REVIEWER: RB       |        |   | DAT | E: 4/13/9 | 3            | PAGE_1_OF_1_  |                                                                         |             |  |  |
|------------|--------------------|--------|---|-----|-----------|--------------|---------------|-------------------------------------------------------------------------|-------------|--|--|
| COMMENTS:  |                    |        |   | •   |           |              |               |                                                                         |             |  |  |
| SAMPLE ID  | COMPOUND           | RESULT | Q | RT  | UNITS     | 5X<br>RESULT | 10X<br>RESULT | SAMPLES<br>AFFECTED                                                     | QUALIFIER   |  |  |
| VBLK1228   | Methylene Chloride | 8      | J |     | ug/kg     | 40           | 80            | B07Q63, B07Q64,<br>B07Q65, B07Q66,<br>B07Q68, B07Q69,<br>B07Q71         | <b>U</b>    |  |  |
| VBLK1228   | Acetone            | 17     |   |     | ug/kg     | 85           | 170           | B07Q63, B07Q64,<br>B07Q65, B07Q66,<br>B07Q67, B07Q68,<br>B07Q69, B07Q71 | Ū .         |  |  |
| VBLK1223R  | Acetone            | 14     |   |     | ug/kg     | 70           | 140           | B07Q72, B07Q73,<br>B07Q75, B07Q76                                       | U .         |  |  |
|            |                    |        |   |     |           |              |               |                                                                         |             |  |  |
|            |                    | _      |   |     |           |              |               |                                                                         | بعو<br>نيتو |  |  |
|            |                    |        |   |     |           |              |               |                                                                         | >rs         |  |  |
|            |                    |        |   |     |           | ·            |               |                                                                         |             |  |  |
| <u> </u>   |                    |        |   |     |           |              |               |                                                                         |             |  |  |
|            |                    |        |   |     |           |              |               |                                                                         |             |  |  |
|            |                    |        |   |     |           |              |               |                                                                         |             |  |  |
|            |                    |        |   |     |           |              |               |                                                                         |             |  |  |
|            |                    |        |   |     |           |              |               |                                                                         | <del></del> |  |  |

# DATA QUALIFICATION SUMMARY

| SDG: B07Q63        | REVIEWER: RB | DATE: 4/13/93                                                                                   | PAGE_1_OF_1                |
|--------------------|--------------|-------------------------------------------------------------------------------------------------|----------------------------|
| COMMENTS:          | ·            |                                                                                                 |                            |
| COMPOUND           | QUALIFIER    | SAMPLES AFFECTED                                                                                | REASON                     |
| Methylene Chloride | U            | B07Q63, B07Q64, B07Q65,<br>B07Q66, B07Q68, B07Q69,<br>B07Q71                                    | Lab Blank<br>Contamination |
| Acetone            | U            | B07Q63, B07Q64, B07Q65,<br>B07Q66, B07Q68, B07Q69,<br>B07Q71, B07Q72, B07Q73,<br>B07Q75, B07Q76 | Lab Blank Contamination    |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |
|                    |              |                                                                                                 |                            |

0

| SAMPLE LOCATION INFORMATION | ГОИ                  | INFORMAT | YND SYMBIE       | MEIT               |
|-----------------------------|----------------------|----------|------------------|--------------------|
| SEWI-AOFVLIFES              | DATE<br>DAJGMAS      | XIATAM   | NOWBEK<br>SYMBIE | SAMPLE<br>LOCATION |
| 8-6 '2-6                    | 12/09/92             | S        | B07Q52           | 750-K-T            |
| 8-5 ,7-5                    | 75/00/2T             | s        | BO7Q53           |                    |
| 8-E 'L-E                    | 75/00/21             | S        | B07056           |                    |
| 8-£ 'L-E                    | 75/00/05             | S        | B07055           |                    |
| 8-E 'L-E                    | 75/09/95<br>75/09/95 | S        | B07Q56           |                    |
| 8-6 'L-6                    | 75/09/95             | s        | B07058           |                    |
| 3-E 'L-E                    | TS\09\92             | S        | B07Q59           |                    |
| 3-5 ,7-5                    | 15\09\92             | S        | B07Q60           |                    |
| 8-6 ,7-6                    | 75/09/95             | S        | BOZÕET           |                    |
| 8-6 ,7-6                    | 75/09/55             | S        | B07Q62           |                    |
| 3-75' 3-73                  | Z6/8T/ZT             | s        | B07Q63           |                    |
| 3-75' 3-73                  | 75/78/92             | ្ នាំ    | B07Q64           |                    |
| 3-15' 3-13                  | 75/78/65             | S        | <b>307</b> 065   |                    |
| 3-15' 3-13                  | 75/78/65             | S        | B07Q66           |                    |
| 3-75' 3-73                  | 75/78/65             | s        | B07087           |                    |
| 3-75' 3-73                  | TS/T8/85             | s        | 892708           |                    |
| 3-75' 3-73                  | TS/18/85             | s        | B07Q69           |                    |
| 21-2 '21-E                  | 75/18/65             | s        | B07Q70           |                    |
| 3-12 3-13                   | 75/81/21             | S        | BOZOZI           |                    |
| 3-T5' 3-T3<br>3-T5' 3-T3    | 75/78/92<br>75/78/95 | S<br>S   | B07Q73           |                    |

MHC-SD-EN-TI-T27, Rev. 0

# 3.0 SEMI-VOLATILE ORGANIC DATA VALIDATION

#### 3.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

B07Q52

~

B07Q63

# 3.2 HOLDING TIMES

Analytical holding times were assessed to ascertain whether the holding time requirements for semi-volatile analyses were met by the laboratory. Westinghouse-Hanford protocols require that samples be extracted within seven days of collection and be analyzed within 40 days of extraction (WHC 1991a).

Based upon Westinghouse-Hanford data validation procedures, the seven-day extraction holding time was exceeded for several samples. These samples were flagged "J" and are considered to be estimated. However, these samples meet the requirements of USEPA Data Validation Guidelines, which requires a 14-day extraction holding time.

The seven-day holding time was exceeded for the following samples:

• All samples associated with SDG No. B07Q52.

Holding time requirements for all samples were met.

#### 3.3 INSTRUMENT CALIBRATION AND TUNING

# 3.3.1 GC/MS Tuning/Instrument Performance Check

Tuning is performed to ensure that mass resolution, and to some degree, sensitivity, of the GC/MS instrument has been established. When analyzing for semi volatile organic compounds, the GC/MS is tuned using DFTPP. The GC/MS must be tuned prior to the analysis of either standards or samples, and tuning must meet the criteria established by the analytical protocol. The specific criteria for acceptable GC/MS tuning using DFTPP are outlined in Westinghouse-Hanford procedures (WHC 1991) and in CLP protocols (EPA 1988a and 1988b).

As a part of data validation, the original tuning data were checked for transcription and calculation errors to verify that tuning and performance criteria were met.

All tuning and performance criteria were met.

# 3.3.2 Initial Calibration

The GC/MS instrument is calibrated to ensure that it is capable of producing acceptable and reliable analytical data over a range of concentrations. The initial and continuing calibrations are to be performed according to CLP protocols. An initial multipoint calibration is performed prior to sample analysis to establish the linearity range of the GC/MS instrument. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

Instrument response is established by the initial calibration when the RRFs for all target compounds are greater than or equal to 0.05 units. Linearity is established when the RSDs of the RRFs are less than or equal to 30 percent.

All initial calibration results were acceptable.

# 3.3.3 Continuing Calibration

The criteria for accepting the continuing calibration require that a standard be analyzed at least once per 12 hour period and that the RRFs of all target compounds be greater than or equal to 0.05 units. In addition, the percent difference of these RRFs must be less than or equal to 25 percent of the average RRFs calculated for the associated initial calibration.

All continuing calibration results were acceptable.

# 3.4 BLANKS

4

, , ,

1

...

()

Method blank and field blank analyses are performed to determine the extent of laboratory or field contamination of samples. No contaminants should be present in the blanks. Analytical results for analytes present in any sample at less than 5 times the concentration of that analyte found in associated blanks should be qualified as non-detects; in the case of certain common laboratory contaminants, results less than 10 times blank concentrations should be qualified as non-detects.

Due to the presence of di-n-butylphthalate in the laboratory blank, the following associated sample results for the above analyte were qualified as non-detects (U qualifier):

- Sample number B07Q56 in SDG No. B07Q52.
- Sample numbers B07Q64, B07Q65, B07Q66, B07Q67, B07Q68, B07Q69, B07Q71, B07Q72 and B07Q73 in SDG No. B07Q63.

All other blank results were acceptable.

# 3.5 ACCURACY

10

**F** , 144

.0

1

Accuracy was assessed by evaluating the recoveries of stable isotopically labeled surrogate compounds added to all samples and blanks, and by the analysis of a representative sample which was spiked with a variety of organic compounds.

# 3.5.1 Matrix Spike Recovery

Matrix spike compounds are added to a sample which is representative of the sample delivery group. Matrix spike analyses are performed in duplicate using the 11 compounds specified by CLP protocols. All recoveries for the 11 compounds should be within the established QC limits (EPA 1988b). The matrix spike analyses estimate how much the analyses for the target compounds are interfered with, either positively or negatively, by the sample matrix. Because the matrix spike is performed using only one of the samples extracted with the SDG, these data alone cannot be used to evaluate the precision and accuracy of individual samples.

All matrix spike/matrix spike duplicate recovery results were acceptable.

# 3.5.2 Surrogate Recovery

Surrogate compound recoveries are calculated using analytical results from six stable, isotopically labeled surrogate compounds added to the sample prior to sample preparation and analysis. Matrix-specific surrogate compound recovery control windows have been established by the EPA CLP program. When recoveries for any two surrogate compounds are out of the control window, all positively identified target compound concentrations in samples associated with the unacceptable surrogate recoveries are qualified as estimates (J) and undetected compounds are qualified estimated below the detection limit (UJ).

Surrogate recovery results were acceptable for all samples.

#### 3.6 PRECISION

٠, )

\*\*\*

40,000

The precision is expressed by the RPD between the recoveries of the matrix spike and the matrix spike duplicate analyses performed on a sample, and through a comparison of the results for field duplicate samples. Acceptable control windows for RPD for matrix spike/matrix spike duplicate analyses have been established by the EPA CLP program.

Field precision is measured by analyzing duplicate samples taken in the field. No standards have been established for qualifying data based on RPD for duplicate field samples by CLP protocols. Westinghouse-Hanford procedures establish the following criteria for duplicate field sample analyses for organic compounds, based on criteria established for inorganic analyses for laboratory duplicates:

- 1. For compounds whose concentrations are greater than 5 times CRQL, RPDs, must be ±20 percent for aqueous samples and ±35 percent for soil samples.
- When one or more compounds are present at concentrations less than 5 times CRQL, the concentration difference must be ± CRQL for aqueous samples and ± CRQL for soil samples.

The matrix spike/matrix spike duplicate RPD results were acceptable for all samples.

#### 3.7 SYSTEM PERFORMANCE

Internal standard performance was assessed to determine whether abrupt changes in instrument response and sensitivity occurred that may have affected the reliability of the analytical data. The response (area or height) of the internal standards must not vary by more than -50 percent or +100 percent from the response of the calibration standard that was used to calculate the upper and lower bounds. The upper and lower bounds define the range for acceptable internal standard response (area/height) for the sample analyses. In addition, retention times for the internal standard must not vary more than ±30 seconds from that of the associated calibration standard.

All internal standard results were acceptable.

# 3.8 COMPOUND IDENTIFICATION AND QUANTITATION

The identities of detected compounds were confirmed to investigate the possibility of false positives. The confirmation of compound identification during the QA review focuses on false positives because only mass spectra for positive identifications

- Sample number B07Q56 in SDG No. B07Q52.
- Sample numbers B07Q64, B07Q65, B07Q66, B07Q67, B07Q68, B07Q69, B07Q71, B07Q72 and B07Q73 in SDG No. B07Q63.

All other blank results were acceptable.

## 3.5 ACCURACY

444

3

Accuracy was assessed by evaluating the recoveries of stable isotopically labeled surrogate compounds added to all samples and blanks, and by the analysis of a representative sample which was spiked with a variety of organic compounds.

# 3.5.1 Matrix Spike Recovery

Matrix spike compounds are added to a sample which is representative of the sample delivery group. Matrix spike analyses are performed in duplicate using the 11 compounds specified by CLP protocols. All recoveries for the 11 compounds should be within the established QC limits (EPA 1988b). The matrix spike analyses estimate how much the analyses for the target compounds are interfered with, either positively or negatively, by the sample matrix. Because the matrix spike is performed using only one of the samples extracted with the SDG, these data alone cannot be used to evaluate the precision and accuracy of individual samples.

All matrix spike/matrix spike duplicate recovery results were acceptable.

#### 3.5.2 Surrogate Recovery

Surrogate compound recoveries are calculated using analytical results from six stable, isotopically labeled surrogate compounds added to the sample prior to sample preparation and analysis. Matrix-specific surrogate compound recovery control windows have been established by the EPA CLP program. When recoveries for any two surrogate compounds are out of the control window, all positively identified target compound concentrations in samples associated with the unacceptable surrogate recoveries are qualified as estimates (J) and undetected compounds are qualified estimated below the detection limit (UJ).

Surrogate recovery results were acceptable for all samples.

#### 3.6 PRECISION

The precision is expressed by the RPD between the recoveries of the matrix spike and the matrix spike duplicate analyses performed on a sample, and through a comparison of the results for field duplicate samples. Acceptable control windows for RPD for matrix spike/matrix spike duplicate analyses have been established by the EPA CLP program.

Field precision is measured by analyzing duplicate samples taken in the field. No standards have been established for qualifying data based on RPD for duplicate field samples by CLP protocols. Westinghouse-Hanford procedures establish the following criteria for duplicate field sample analyses for organic compounds, based on criteria established for inorganic analyses for laboratory duplicates:

- 1. For compounds whose concentrations are greater than 5 times CRQL, RPDs, must be ±20 percent for aqueous samples and ±35 percent for soil samples.
- When one or more compounds are present at concentrations less than 5 times CRQL, the concentration difference must be ± CRQL for aqueous samples and ± CRQL for soil samples.

The matrix spike/matrix spike duplicate RPD results were acceptable for all samples.

#### 3.7 SYSTEM PERFORMANCE

V-1

9

Internal standard performance was assessed to determine whether abrupt changes in instrument response and sensitivity occurred that may have affected the reliability of the analytical data. The response (area or height) of the internal standards must not vary by more than -50 percent or +100 percent from the response of the calibration standard that was used to calculate the upper and lower bounds. The upper and lower bounds define the range for acceptable internal standard response (area/height) for the sample analyses. In addition, retention times for the internal standard must not vary more than ±30 seconds from that of the associated calibration standard.

All internal standard results were acceptable.

#### 3.8 COMPOUND IDENTIFICATION AND QUANTITATION

The identities of detected compounds were confirmed to investigate the possibility of false positives. The confirmation of compound identification during the QA review focuses on false positives because only mass spectra for positive identifications

are submitted. However, target compounds that are reported as undetected are also evaluated to investigate the possibility of false negatives. Confirmation of possible false negatives is addressed by reviewing other factors relating to analytical sensitivity (e.g., detection limits, linearity, analytical recovery). Compound retention times and mass spectra must match those for the standard within set to tolerance limits (EPA 1988b).

# 3.8.1 Reported Results and Quantitation Limits

Compound quantitations and reported detection limits were recalculated and verified to ensure that they are accurate and are consistent with the internal standards and relative retention times specified by the CLP scope of work.

At concentrations below the CRQL, instrument precision becomes more variable as the IDL is approached. Therefore, the concentrations of any compound detected below the CRQL are qualified as estimates.

All compound identifications and quantitations have been verified as correct.

# 3.8.2 Tentatively Identified Compounds

-

1

-

(7)

Several TICs were identified in the blanks and samples which were flagged "U" according to Westinghouse-Hanford protocols; if the sample result was  $\pm 0.06$  RRT from that of the blank and if the sample result was less than 5 times the highest blank concentration.

This action is contrary to EPA policy, which indicates that TIC results shown to be due to the presence of blank contamination are flagged  $^{\rm HR}^{\rm H}$ .

#### 3.9 OVERALL ASSESSMENT AND SUMMARY

A thorough review of ongoing data acquisition and instrument performance criteria was made to assess overall GC/MS instrument performance. No changes in instrument performance were noted that would result in the degradation of data quality. No indications of unacceptable instrument performance (i.e., shifts in baseline stability, retention time shifts, extraneous peaks, sensitivity) were found during the quality assurance review.

In general, the semi-volatile data presented in this report met the protocol-specified QA/QC requirements. Minor blank contamination was detected in several samples. The sample to extraction holding time was exceeded, though not grossly

exceeded, for all samples in one data package. As required by Westinghouse-Hanford protocols, all results for these samples were flagged "J" and are considered to be estimates. The data are considered valid and usable within the standard error associated with the method. All other results are considered to be acceptable and usable for all purposes.

0

are submitted. However, target compounds that are reported as undetected are also evaluated to investigate the possibility of false negatives. Confirmation of possible false negatives is addressed by reviewing other factors relating to analytical sensitivity (e.g., detection limits, linearity, analytical recovery). Compound retention times and mass spectra must match those for the standard within set to tolerance limits (EPA 1988b).

# 3.8.1 Reported Results and Quantitation Limits

Compound quantitations and reported detection limits were recalculated and verified to ensure that they are accurate and are consistent with the internal standards and relative retention times specified by the CLP scope of work.

At concentrations below the CRQL, instrument precision becomes more variable as the IDL is approached. Therefore, the concentrations of any compound detected below the CRQL are qualified as estimates.

All compound identifications and quantitations have been verified as correct.

# 3.8.2 Tentatively Identified Compounds

Several TICs were identified in the blanks and samples which were flagged "U" according to Westinghouse-Hanford protocols; if the sample result was ±0.06 RRT from that of the blank and if the sample result was less than 5 times the highest blank concentration.

This action is contrary to EPA policy, which indicates that TIC results shown to be due to the presence of blank contamination are flagged "R".

#### 3.9 OVERALL ASSESSMENT AND SUMMARY

0

A thorough review of ongoing data acquisition and instrument performance criteria was made to assess overall GC/MS instrument performance. No changes in instrument performance were noted that would result in the degradation of data quality. No indications of unacceptable instrument performance (i.e., shifts in baseline stability, retention time shifts, extraneous peaks, sensitivity) were found during the quality assurance review.

In general, the semi-volatile data presented in this report met the protocol-specified QA/QC requirements. Minor blank contamination was detected in several samples. The sample to extraction holding time was exceeded, though not grossly

exceeded, for all samples in one data package. As required by Westinghouse-Hanford protocols, all results for these samples were flagged "J" and are considered to be estimates. The data are considered valid and usable within the standard error associated with the method. All other results are considered to be acceptable and usable for all purposes.

O

SEMIVOLATILE ORGANIC ANALYSIS, SOIL MATRIX, (ug/Kg)

| Laboratory: IMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                            |                |            |               |              |               |          |               |          |     |                |          |          |             |          |            |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------|----------------|------------|---------------|--------------|---------------|----------|---------------|----------|-----|----------------|----------|----------|-------------|----------|------------|------|
| Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SDG: | B07052                                                                     | T              |            |               |              |               |          |               |          |     |                |          |          |             |          |            |      |
| Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •    | B07052                                                                     | B070           | 25.2       | BAZACE        | ۴            | 90000         | 9        | 007067        | סאטבעם   |     | 01000          |          |          | -           |          |            | -[   |
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 120-N-1                                                                    | 120-N-1        | 3 -        | 120 KG        | 7            | 120-N-1       | T        | 120-N-1       | N 001    |     | 60/09          | 90/09    |          | B07061      | <u> </u> | 807062     | _  , |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                                            | PUG            |            | 18            | +            |               | Ť        |               |          | 7   | 1-1-07         | <u> </u> |          | -88-        | -        | -2-        | _    |
| Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 12/09/92                                                                   | 1209           | 26         | 12/09/92      | ۲            | 12/09/92      | Ť        | 12/09/92      | 12/09/92 | T   | 12/00/02       | 1286     | 12/00/02 | 4 2 100 100 | 2        | 19/00/02   | _    |
| Extraction Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 12/22/92                                                                   | 12/22          | 25         | 12/22/92      | T            | 12/23/92      | T        | 12/22/92      | 12/22/92 | †   | 12/23/02       | 128      | 19/99/09 | 12/22/02    | 2 12     | 20000      | _ ا  |
| Analysis Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 12/28/92                                                                   | 12/28          | 8          | 12/28/92      | Т            | 12/29/92      | Г        | 12/28/92      | 12/28/92 | T   | 12/20/02       | 12/21    | 12/20/02 | 12/20/02    | ų ç      | 40,0000    | ۔ ا  |
| Semivolatile Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2000 | Receipt D                                                                  |                | 2          | Poet 4        | C            | Does          | C        | Domit         | 4        | 6   | uг             | Т        | 30.00    | 100%        | УΓ       | 000        | Ų    |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 330  |                                                                            | 360            | ; <u>=</u> | Т.            | <b>—</b>     | _             | 7=       | Т.            | ADS.     | 3   | THE COL        | ¥        | _        | <u>\$</u>   | -1       | Hesuff Co. | 0    |
| bis(2-Chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 330  | _                                                                          |                | 3 =        | 3 8           | 3 =          | _             | 3 =      | -             | 3 8      | 3   | 300            | $\perp$  | _        | 1           | _        | 3          | 3    |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 330  | 7                                                                          | _              |            | _             | 3 =          | -             | 3 =      | 3 2 2         | 3 2      | 3 = | _              | 1        | -        |             | _        | 2          | 3    |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330  | 1                                                                          | 1              | 3 3        | 330           | 3 =          | _             | 3 =      | _             | 3        | 3 = | 2000           | _        | _        | _           | _        | 3          | 3    |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330  | 7                                                                          |                |            | 338           | 3 3          | _             | 3 =      | _             | 3 8      | 3 = | _              | 1        | -        | 1           | _        | 3          | 3 :  |
| Benzyl Alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 330  | +                                                                          |                |            | _             | 3 =          | _             | <br> } = | -             | 3 8      | 3 = | _              | 1        | 3        | 1           | 3        | 3          | 3 :  |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330  | +=                                                                         | _              |            | ┪~            | 3 =          | _             | 3 =      |               | 3 8      | 3 = | 000            | 1        |          | 1           |          | 9          | 3    |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 330  | 1                                                                          |                | 3          | _             | 3 3          |               | 3 3      | ╼             | 3 8      | 3 = | _              |          | 3        | 3           | 3        | 2 0        | 3 :  |
| bis(2-Chlorolsopropy)Cher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 330  | _                                                                          | _              | 2          | _             | 3 =          | ago.          | 3 =      | -             | 3        | 3   | _              | 1        | +        | 1           | _        | <b>3</b>   | 3    |
| 4-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 330  | _                                                                          | _              | 3 =        | _             | 3 =          | _             | 3 =      | ₩,            | 3 2      | 3 = | 3 3            | $\perp$  | _        | _           | _        | 95         | 3    |
| N-Nitroso-di-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33   | $\overline{}$                                                              | _              | 3          |               | 3 =          | 3 6           | 3 =      | 3 2           | 3 8      | 3   | -+             | 1        | _        | _           | -        | 3          | 3    |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88   | ┰                                                                          | _              | 3 E        | 388           | 3 =          | _             | 3 =      | 200           | 3        | 3   | -              | _        | ٦<br>9   | 8           | _        | 300        | 3    |
| Nitrobenzena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 830  | +                                                                          | $\overline{}$  | 3 =        | _             | 3 =          | _             | 3 =      | _             | 8        | 3   | 300            |          | _        | _           |          | 200        | 3    |
| sophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 330  | _                                                                          | _              | 3 =        | _             | 3 =          | $\neg$        | 3 =      | 2000          | 9        | 3 : |                |          | -1       | $\perp$     |          | 80         | 3    |
| 2-Nitrophanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33   | _                                                                          | _              | 3 =        | -             | 3            | _             | 3 =      | _             | 3        | 3   | _              |          | _        | 8           |          | 80         | 3    |
| 2 4-Nimethylahanal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 8  | _                                                                          | _              | 3          | _             | <del>,</del> | _             | 3 :      | _             | 200      | 3   | _              |          |          |             |          | 340        | 3    |
| Dorzek seid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 5  |                                                                            | _              | 3          | 3             | 3            | 3             | 3        | 350 UJ        | 360      | 3   | _              |          |          |             |          | 340        | m    |
| John Chlorophon Amothoro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 8  | _                                                                          | _              | 3          | _             | 7            |               | 3        | _             | 98       | 3   |                |          |          | 830         |          | 820        | 3    |
| OS C-CHOCOURACY MOUNTAINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3    |                                                                            | _              | 3          | _             | 3            | _             | 3        | $\overline{}$ | 960      | 3   |                |          | 330 W    | 340         |          | 980        | 3    |
| Z,+-Dichophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3    | т                                                                          | $\neg$         | 3          | $\rightarrow$ | 3            |               | 3        | _             | 360      | 3   | _              | L        | 1        | 340         |          | 340        | 3    |
| I, Z, 4-I FICTION COSTIZENS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3    | _                                                                          | _              | 3          | 330           | 3            | $\overline{}$ | 3        | _             | 380      | 3   | 360 UJ         |          | _        | 350         | ━        | 340        | 3    |
| Aprilliaien in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 8  | _                                                                          | -              | 3          | _             | 3            | _             | 3        | 350 W         | 360      | 3   | 360 UL         |          | 330 UJ   | 340         | 3        | 380        | 3    |
| 4-CHOOSEMIING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3    | 73 :<br>200<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | _              | 3          | $\overline{}$ | 3            |               | 3        | _             | 360      | m   | 360 UJ         |          | 330      | 340         | 3        | 350        | 3    |
| MARCHING COURSE IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3    |                                                                            | _              | 3          | -             | 3            | $\overline{}$ |          | _             | 360      | 3   |                |          | 30 m     | 340         | 3        | -          | 3    |
| The Carlo Control of the Carlo | 3    | 3                                                                          | _              | 3          | _             | 3            |               | 3        | _             | 360      | 3   | 360 U          | L        | 3        | 340         | 3        | 98         | 3    |
| z-metrymaphiratene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 8  | _                                                                          | _              | 3          | -             | 3            | $\overline{}$ | ╛        | _             | 360      | 3   | 360            | L        | 330 UL   | 340         | 3        | _          | 3    |
| Hexachiorocyclopentagiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3    | _                                                                          | _              | 3          | -             | 3            |               |          | 350 UJ        | 360      | m   | _              | L        | 30       | 8           | 3        | _          | 3    |
| 2,4,6-1 richlorophenoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3    |                                                                            | <del>-</del> + | 3          | 88            | 3            | $\neg$        |          |               |          | 3   | 70<br>98<br>98 | L        | 330 UJ   | 8           | 3        | 28         | 3    |
| 2,4,5- Inchiorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8    | _                                                                          | ╛              | 3          | _             | m            | _             |          | 860 UJ        |          | 3   | 30<br>098      | L        | 810 U    | 83          | 3        | +-         | 3    |
| Z-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330  |                                                                            | ဗ္တ            | 3          |               | 3            | -             |          | 350 W         | 98       | 3   | 388<br>88      | L        | 330 LJ   | 340         | 3        | _          | 3    |
| Z-Nifroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92   | 3<br>92<br>8                                                               | 870            | 3          |               | n            |               | m        | 860 UJ        | 98       | 3   | 2008           |          | 810 WJ   | 830         | 3        | 830        | 3    |
| Dimethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 930  | _                                                                          | -              | 3          | _             | S            | -             |          | 350 UJ        |          | 3   | 360            | L        | 330 W    | 350         | 3        |            | 3    |
| Acenaphinylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200  | 360 UJ                                                                     | -              | 3          | 330 10.1      | _            |               |          | 350 UJ        | 360      | 3   | 360            | L        | 330      | 350         | =        | 340        | 3    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                            |                |            |               |              |               | ļ        |               |          |     | _              |          | _        | }           | 3        | _          |      |

| Project: WESTINGHOUSE-HA    | NFORD    |          |    | 1        |     |          |          |          |    |          |     |             |              |          |               |          |    |          |          |          |                |
|-----------------------------|----------|----------|----|----------|-----|----------|----------|----------|----|----------|-----|-------------|--------------|----------|---------------|----------|----|----------|----------|----------|----------------|
| Laboratory: TMA             |          |          |    | i        |     |          |          |          |    |          |     |             |              |          |               |          |    |          |          |          |                |
| Case                        | SDG: E   | 307Q52   |    | 1        |     |          |          |          |    |          |     |             |              |          |               |          |    |          |          |          |                |
| Sample Number               | <u> </u> | B07Q52   | !  | B07Q53   |     | B07Q55   |          | B07Q56   |    | B07Q57   | ,   | B07Q58      |              | B07Q59   |               | B07Q60   |    | B07Q61   | -        | B07Q62   |                |
| Location                    |          | 120-N-   | 1  | 120-N-   | 1   | 120-N-   |          | 120-N-1  |    | 120-N-1  | 1   | 120-N-1     |              | 120-N-1  | :<br>I        | 120-N-1  |    | 120-N-1  | •        | 120-N-   |                |
| Remarks                     | ****     |          |    | DUP      |     | EB       | <u> </u> | 120 11   |    | 120 14   |     | 1.20 11 1   |              | 120 11   | <u> </u>      | 120-14-1 |    | 120-14-  | <u> </u> | 120-14-  |                |
| Sample Date                 |          | 12/09/92 | 2  | 12/09/92 | 2   | 12/09/92 | <u> </u> | 12/09/92 | •  | 12/09/92 | ·   | 12/09/92    |              | 12/09/92 |               | 12/09/92 | ,  | 12/09/92 | ,        | 12/09/92 | <del>-</del> - |
| Extraction Date             |          | 12/22/92 | 5  | 12/22/92 | 2   | 12/22/92 | <u> </u> | 12/23/92 |    | 12/22/92 |     | 12/22/92    |              | 12/23/92 |               | 12/22/92 |    | 12/22/92 |          | 12/22/92 |                |
| Analysis Date               |          | 12/28/92 | 2  | 12/28/92 | · _ | 12/28/92 |          | 12/29/92 |    | 12/28/92 | ·   | 12/28/92    |              | 12/29/92 |               | 12/29/92 |    | 12/29/92 |          | 12/29/92 |                |
| Semivolatile Compound       | CROL     | Result   | Q  | Result   | Q   | Result   | Q        |          | Q  |          | Q   | <del></del> | Q            |          | Q             |          | ā  |          | ī        |          | ī              |
| 3-Nitroaniline              | 1700     | 870      | UJ | 870      | W   | 790      | IJ       | 840      | w  | 860      | w   |             | ÜĴ           |          | J             | 810      | ū  |          | ū        | 820      | ᇤ              |
| Acenaphthene                | 330      | 360      | UJ | 360      | w   | 330      | W        | 350      | w  | 350      | w   |             | ŪĴ           | 360      | Ü             | 330      | ü  | 340      | w        | 340      | <del>W</del>   |
| 2,4-Dinitrophenol           | 1700     | 870      | W  | 870      | UJ  | 790      | UJ       | 840      | IJ | 860      | w   | 860         | UJ           | 860      | UĴ            | 810      | IJ |          | ŪĴ       | 820      | W              |
| 4-Nitrophenol               | 1700     | 870      | W  | 870      | ÜĴ  | 790      | UJ       | 840      | บJ | 860      | IJ  | 860         | ÜĴ           | 860      | IJ            | 810      | w  | 830      | Ü        | 820      | _              |
| Dibenzofuran                | 330      | 360      | IJ | 360      | IJ  | 330      | IJ       | 350      | IJ | 350      | IJ  | 360         | UJ           | 360      | IJ            | 330      | w  | 340      | Ü        | 340      | W              |
| 2,4-Dinitrotoluene          | 330      | 360      | UJ | 360      | IJ  | 330      | IJ       | 350      | IJ | 350      | IJ  | 360         | ŲĴ           | 360      | IJ            | 330      | IJ | 340      | ŪJ       | 340      | W              |
| Diethylphthalate            | 330      | 360      | UJ | 360      | IJ  | 330      | IJ       | 350      | W  | 350      | IJ  | 360         | UJ           | 360      | IJ            | 330      | IJ | 340      | UJ       | 340      |                |
| 4-Chlorophenyl-phenyl ether | 330      | 360      | IJ | 360      | UJ  | 330      | IJ       | 350      | IJ | 350      | IJ  | 360         | UJ           | 360      | UJ            | 330      | IJ | 340      | IJ       | 340      | W              |
| Fluorene                    | 330      | 360      | UJ | 360      | UJ  | 330      | IJ       | 350      | 3  | 350      | UJ  | 360         | ÜĴ           | 360      | IJ            | 330      | W  | 340      | ŪĴ       | 340      | W              |
| 4-Nitroaniline              | 1700     | 870      | N  | 870      | UJ  | 790      | IJ       | 840      | IJ | 860      | UJ  | 860         | UĴ           | 860      | IJ            | 810      | ÜJ | 830      | IJ       | 820      | UJ             |
| 4,6-Dinitro-2-methylphenol  | 1700     | 870      | IJ | 870      | IJ  | 790      | IJ       | 840      | IJ | 860      | IJ  | 860         | UJ           | 860      | IJ            | 810      | IJ | 830      | IJ       | 820      | W              |
| N-Nitrosodiphenylamine      | 330      | 360      | UJ | 360      | UJ  | 330      | ÜJ       | 350      | IJ | 350      | บัว | 360         | UJ           | 360      | UJ            | 330      | W  | 340      | UJ       | 340      | 1 1            |
| 4-Bromophenyl-phenylether   | 330      | 360      | IJ | 360      | IJ  | 330      | ŪĴ       | 350      | U  | 350      | IJ  | 360         | ÜĴ           | 360      | UJ            | 330      | UJ | 340      | IJ       | 340      | TUJ            |
| Hexachlorobenzene           | 330      | 360      | Ü  | 360      | UJ  | 330      | UJ       | 350      | Ü  | 350      | IJ  | 360         | ÜĴ           | 360      | UJ            | 330      | IJ | 340      | IJ       | 340      |                |
| Pentachlorophenol           | 1700     | 870      | UJ | 870      | 3   | 790      | IJ       | 840      | 3  | 860      | IJ  | 860         | IJ           | 860      | IJ            | 810      | W  | 830      | IJ       | 820      | w              |
| Phenanthrene Phenanthrene   | 330      | 360      | IJ | 360      | 3   | 330      | IJ       | 350      | w  | 350      | IJ  | 360         | UJ           | 360      | IJ            | 330      | w  | 340      | IJ       | 340      | ᄪ              |
| Anthracene                  | 330      | 360      | UJ | 360      | 3   | 330      | 3        | 350      | IJ | 350      | UJ  | 360         | IJ           | 360      | IJ            | 330      | W  | 340      | W        | 340      | ᄪ              |
| Di-n-butyiphthalate         | 330      | 360      | 3  | 360      | 3   | 330      | 3        | 350      | W  | 350      | W   |             | 띵            |          | UJ            | 330      | IJ | 340      | IJ       | 340      | UJ             |
| Fluoranthene                | 330      | 360      | 3  | 360      | 3   | 330      | IJ       | 350      | IJ | 350      | W   |             | <del>U</del> | 360      | IJ            | 330      | UJ | 340      | w        | 340      | UJ             |
| Pyrene                      | 330      | 360      | 3  | 360      | 3   | 330      | 3        | 350      | S  | 350      | UJ  | 360         | IJ           | 360      | w             | 330      | W  | 340      | W        | 340      | w              |
| Butylbenzylphthalate        | 330      | 360      | IJ | 360      | 3   | 330      | 3        | 350      | IJ | 350      | IJ  |             | IJ           | 360      | IJ            | 330      | IJ | 340      | ພ        | 340      | w              |
| 3,3'-Dichlorobenzidine      | 330      | 360      | S  | 360      | IJ  | 330      | 3        |          | IJ | 350      | W   |             | UJ           | 360      | IJ            | 330      | W  | 340      | 3        | 340      | W              |
| Benz(a)anthracene           | 330      |          | IJ |          | 2   | 330      | 3        |          | 2  | 350      | 3   |             | Ü            | 360      | Ü             | 330      | IJ | 340      | IJ       | 340      | w              |
| Chrysene                    | 330      |          | IJ | 360      | IJ  | 330      | 3        |          | W  | 350      | IJ  | 360         | IJ           |          | W             | 330      | W  | 340      | IJ       | 340      | W              |
| bis(2-Ethylhexyl)phthalate  | 330      |          | ٤  | 360      | IJ  |          | 3        |          | W  | 350      | IJ  |             | ŲJ           |          | IJ            | 330      | W  | 340      | ÜJ       | 340      | W              |
| Di-n-octylphthalate         | 330      |          | IJ | 360      | S   | 330      | 3        | 350      | IJ | 350      | 3   |             | ÚĴ           | 360      | W             | 330      | W  | 340      | W        | 340      | w              |
| Benzo(b)fluoranthene        | 330      | 360      | E  | 360      | IJ  |          | พ        |          | ٤  | 350      | 3   |             | W            | 360      | W             | 330      | 2  | 340      | 3        | 340      | w              |
| Benzo(k)fluoranthene        | 330      |          | ٤  | 360      | UJ  |          | IJ       |          | W  | 350      | IJ  |             | IJ           | 360      | w             | 330      | C) | 340      | IJ       | 340      | w              |
| Benzo(a)pyrene              | 330      |          | UJ | 360      | IJ  |          | IJ       |          | W  | 350      | 3   |             | IJ           |          | IJ            | 330      | IJ | 340      | ÜJ       | 340      | w              |
| Indeno(1,2,3-cd)pyrene      | 330      |          | IJ | 360      | IJ  |          | IJ       |          | Ü  | 350      | IJ  |             | W            |          | UJ            | 330      | W  |          | IJ       | 340      | W              |
| Dibenz(a,h)anthracene       | 330      |          | IJ | 360      | ÜJ  |          | ŪĴ       |          | w  | 350      | W   |             | IJ           | 360      | 屻             | 330      | พ  |          | IJ       | 340      | W              |
| Benzo(g,h,i)perylene        | 330      | 360      | IJ | 360      | IJ  | 330      | ŰĴ       | 350      | W  | 350      | IJ  | 360         | IJ           |          | <del>UJ</del> |          | IJ |          | UJ       | L        | UJ             |
|                             |          |          |    |          |     |          |          |          |    | 1        |     |             |              |          |               |          |    |          |          |          | لئت            |

10

SEMIVOLATILE ORGANIC ANALYSIS, SOIL MATRIX, (ug/Kg)

| Саѕө                        | SDG:        | B07Q52   |            |          |          |            |          |               |          |    |                                                                    |          |    |          |        |          |          |        |
|-----------------------------|-------------|----------|------------|----------|----------|------------|----------|---------------|----------|----|--------------------------------------------------------------------|----------|----|----------|--------|----------|----------|--------|
| Sample Number               |             | B07Q52   | 8          | 7053     | 1807055  | 35         | B07056   | 92            | B07Q57   |    | B07058                                                             | B07059   | r  | B07060   | 4      | R07061   | 1807062  | 8      |
| Location                    |             | 120-N-1  | 12         | 120-N-1  | 120-N-1  | Ž          | 120-N-1  | Z             | 120-N-1  | 1  | 120-N-1                                                            | 120-N-1  |    | 120-N-1  | 1 2    | 120-N-1  | 120-N-   | , -    |
| Remarks                     |             |          | ٥          | 윤        | EB       |            |          |               |          | +  |                                                                    |          |    |          | +      |          |          |        |
| Sample Date                 |             | 12/09/92 | 12         | 12/09/92 | 12/09/92 | 26/6       | 12/09/92 | 26%           | 12/09/92 | 1  | 12/09/92                                                           | 12/09/92 | Τ. | 12/09/92 | Ë      | 12/09/92 | 12/09/92 | 8      |
| Extraction Date             |             | 12/22/92 |            | 122/92   | 12/22/92 | 292        | 12/23/92 | 795           | 12/22/92 |    | 12/22/92                                                           | 12/23/92 | T  | 1202092  | +      | 12/22/92 | 12/22/92 | 18     |
| Analysis Date               |             | 12/28/92 | l          | 128/92   | 12/28/92 | 262        | 12/29/92 | 265           | 12/28/92 | 12 | 12/28/92                                                           | 12/29/9  |    | 12/29/92 |        | 12/29/92 | 12/29/92 | 1 2    |
| Semivolatile Compound       | CHOL        | Result   | 0<br>%     | O His    | Result   | <u>0</u>   |          | 0             | Result   | O  | Result O                                                           | Result   | a  |          | G<br>F | Pesult O | Result   | ı 🗀    |
| Phenol                      | 330         | 98       | 3          | 360 UJ   | L        | 330 [1]    |          | 350 UJ        | 350      | 15 | 1_                                                                 |          | ıΞ | T        | 1=     | ┱        |          | 340    |
| bis(2-Chloroethyl)ether     | 330         | +-       | 3          | _        | L        | +          | L        | _             | 350      | 3  | _                                                                  | 8 8      | 13 | 7        | 3 3    | _        |          |        |
| 2-Chlorophenol              | 330         | 986      | 3          | 360      | L        | +          | Ĺ        | +             | 350      | 3  | _                                                                  |          | 13 | _        | 3 3    | -        |          | _      |
| 1,3-Dichlorobenzene         | 330         | 360      | 3          | _        | L        | _          |          | 350 W         | 350      | 3  | -                                                                  | 88       | 3  | _        | 33     | 340      |          | _      |
| 1,4-Dichlorobenzene         | 330         | _        | 3          | 360      | L        | 330 UJ     |          | 350 UJ        | 350      | 3  | +-                                                                 | L        | 3  | +-       | 3      | -        |          | _      |
| Benzyl Alcohol              | 330         | 360      | n          | 360 UJ   |          | 330 U      |          | 350 WJ        | 350      | 3  | 360 UJ                                                             | L        | 3  | +-       | 3      | +        | L        | -      |
| 1,2-Dichlorobenzene         | 330         | 360      | 3          | 380      |          | 330 01     |          | 350 UJ        | 350      | 3  | 360 U                                                              | L        | 3  | 330      | 3      | 340 UJ   |          | +      |
| 2-Methylphenol              | 330         | _        | ß          | 360      | L        | 330        | Ĺ        | 350 W         | 320      | 3  | +-                                                                 | 88       | 3  | +        | 3      | 1        |          | +-     |
| bis(2-Chlorolsopropyt)Ether | 330         | 98       | 3          | 388      |          |            |          | -             | 350      | 3  | _                                                                  | L        | 3  | +-       | 3      | -        | L        | _      |
| 4-Methylphenol              | 330         | 360      | 3          | 360 UJ   | L        |            |          | _             | 350      | 3  | +                                                                  | 98       | 3  | 330      | 13     | _        | 340      | +-     |
| N-Nitroso-di-n-propylamine  | 330         | 1        |            | 360 UJ   | <u> </u> | 30<br>U    |          | 350 UJ        | 350      | 3  | +-                                                                 | L        | _  | +-       | 3      |          |          | -      |
| Hexachloroethane            | 330         |          | m          |          | L        | 330        |          | S0 UJ         | 350      | 3  | 360                                                                | L        | 3  | +-       | 3      | ₩        | 260      | )<br>O |
| Nitrobenzene                | 330         | _        | _<br> <br> | 360 (1.1 | L        | 330 U      | L        | 350 UJ        | 930      | 3  | 380                                                                | L        | 3  | +        | 3      | +-       | L        | 0      |
| Isophorone                  | 330         |          | Ш          | 360 UJ   |          | 330 UJ     |          |               | 350      | 3  | 7                                                                  | _        | _  | 330      | 3      | _        | L        | _      |
| 2-Nitrophenol               | 330         |          |            |          |          | 30         |          | 350 W         | 320      | 3  | 360                                                                |          | 3  | +-       | 3      | 1        | L        |        |
| 2,4-Dimethylphenol          | 330         |          | Щ          |          |          | _          |          |               | 320      | 3  | 360                                                                | 360      | 3  | 330      | 3      | +-       | L        | 3      |
| Benzoic acid                | 1700        |          |            |          |          |            |          | 840 UJ        | 980      | 3  | <u>3</u>                                                           | L        | 3  | •        | 3      | 830      |          | 3      |
| bis(2-Chloroethaxy)methane  | 88          | $\neg$   | _          |          |          | _          |          |               | 320      | n  |                                                                    | 360      | 3  | •        | 3      | 340 UJ   | L        | 3      |
| 2,4-Dichlorophenol          | 830         | $\neg$   |            |          |          | 330 [വ     |          |               | 320      | ເກ | m 096                                                              | _        | 3  | 330      | 3      | 340      |          | 30     |
| 1,2,4-Trichlorobenzene      | 930         | $\neg$   | _          |          |          | _          |          | $\overline{}$ | 350      | m  |                                                                    |          | 3  |          | 3      | 340      | L        | 3      |
| Naphthalene                 | 330         | _        | $\dashv$   |          |          | _          |          | $\overline{}$ | _        | m  |                                                                    |          | 3  |          | 3      | 340      | L        | 3      |
| 4-Chloroaniline             | 9<br>2<br>3 | _        | _          |          | _        | 330<br>830 |          | 350 W         | 350      | n  |                                                                    | 360      | 3  | 330      | 3      | 340      |          | 30     |
| Hexachiorobutadiene         | 330         | _        | _          |          | _        | _          |          | _             | 350      | 3  |                                                                    |          | n  | _        | m      | 340 UJ   |          | 20     |
| 4-Chloro-3-methylphenol     | 8           | _        |            |          |          | 330<br>CE  |          |               | -        | n  | 360 LU                                                             |          | 3  | _        | 3      | 340      | 8        | 30     |
| 2-Methylnaphthalene         | 8           | _        | _          |          |          | 77) OE     |          | <u>m  05</u>  |          | 3  | 360                                                                | L        | 3  |          | 3      | 340      | L        | 200    |
| Hexachlorocyclopentadiene   | 8           |          | 3          | 360 UJ   |          | <u>က</u>   |          | 350 W         |          | 3  | 3008                                                               | L        | 3  |          | 3      | 340      |          | 3      |
| 2,4,6-Trichloraphenol       | 330         |          | m          | 360 11   | L        | 330 UJ     |          |               | _        | 3  | 360 UJ                                                             | Ĺ        | 3  | 330      | 3      | 340      | 8        | 3      |
| 2,4,5-Trichlorophenol       | 1700        | _        |            |          |          | m) oc      |          |               |          | 3  | 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | Ĺ        | 3  | +        | 3      | 830 U    | 828      | 3      |
| 2-Chloronaphthalene         | 88          |          | m          |          |          | ന ജ        | L        | _             | _        | 3  | 360                                                                | 980      | 3  | 4        | 3      | 340 U    | 8        | 3      |
| 2-Nitroaniline              | 1700        |          | Ц          |          |          | 790 UJ     |          |               | _        | 3  | 300<br>090                                                         | 980      | 3  | _        | 3      | B30 (L)  | 828      | 3      |
| Dimethylphthalate           | 330         | Ī        | m          | 360 UJ   |          | 3          |          | 350 UJ        |          | 3  | 380                                                                | Ĺ        | 3  | +        | 3      | 340 []   | 340      | 3      |
| Acenaphthylene              | 330         | ∩ 096    |            | 360 UJ   |          | 330 11.1   | L        | 350 111       | 350      | =  | -                                                                  | 950      | =  |          | [      | +        | l        | E      |
|                             |             |          |            |          |          |            | 1        | -             | -        | 3  | 3                                                                  | _        | 3  | _        | 3      | 3        | ₹<br>₹   |        |

| Project: WESTINGHOUSE-HA    | NFORD |                                                  |    | 1        |             |          |    |          |                             |          |          |          |               |          |                                              |          |               |          |               |          |              |
|-----------------------------|-------|--------------------------------------------------|----|----------|-------------|----------|----|----------|-----------------------------|----------|----------|----------|---------------|----------|----------------------------------------------|----------|---------------|----------|---------------|----------|--------------|
| Laboratory: TMA             |       |                                                  |    | 1        |             |          |    |          |                             |          |          |          |               |          |                                              |          |               |          |               |          |              |
| Case                        | SDG:  | 307Q52                                           |    | 1        |             |          |    |          |                             |          |          |          |               |          |                                              |          |               |          |               |          |              |
| Sample Number               |       | B07Q52                                           | ?  | B07Q53   | <u> </u>    | B07Q55   |    | B07Q56   |                             | B07Q57   | •        | B07Q58   |               | B07Q59   |                                              | B07Q60   | ı.            | B07Q61   |               | B07Q62   |              |
| Location                    |       | 120-N-                                           | 1  | 120-N-   | <del></del> | 120-N-   | •  | 120-N-1  | ·                           | 120-N-   |          | 120-N-1  |               | 120-N-1  | t                                            | 120-N-   |               | 120-N-1  |               |          |              |
| Remarks                     |       | <del>                                     </del> |    | DUP      | -           | EB       | _  | 160-14-  |                             | 120-14-  |          | 120-14-1 |               | 120-14-  | <u>'                                    </u> | 120-14-  | 1             | 12U-N-1  | <u> </u>      | 120-N-   | <u> </u>     |
| Sample Date                 | *     | 12/09/9                                          | 2  | 12/09/92 | ,           | 12/09/92 | ,  | 12/09/92 | •                           | 12/09/92 | <u> </u> | 12/09/92 |               | 12/09/92 |                                              | 12/09/92 | _             | 40100100 |               | 40400404 |              |
| Extraction Date             |       | 12/22/9                                          |    | 12/22/92 |             | 12/22/92 |    | 12/23/92 |                             | 12/22/92 |          | 12/22/92 |               | 12/23/92 |                                              | 12/22/92 |               | 12/09/92 |               | 12/09/92 |              |
| Analysis Date               |       | 12/28/9                                          | 2  | 12/28/92 |             | 12/28/92 |    | 12/29/92 |                             | 12/28/92 |          | 12/28/92 |               | 12/29/92 |                                              | 12/29/92 |               | 12/29/92 |               | 12/29/92 |              |
| Semivolatile Compound       | CROL  | Result                                           | Q  |          | Q           |          | Q  |          | a                           |          | a        |          | Q             |          | Q                                            |          | 0             |          |               | Result   | <u> a</u>    |
| 3-Nitroaniline              | 1700  | 870                                              | UJ | 870      | ŪJ          | 790      | Ü  |          | <del>u</del>                | 860      | w        | 860      | ü             |          | ÜJ                                           |          | Ü             |          | 5             | 820      | ᇤ            |
| Acenaphthene                | 330   | 360                                              | UJ | 360      | W           | 330      | w  |          | ü                           | 350      | w        | 360      | Ü             | 360      | UJ                                           | 330      | UJ<br>UJ      | 340      | 3             | 340      |              |
| 2,4-Dinitrophenol           | 1700  | 870                                              | w  | 870      | ŪJ          | 790      | w  |          | Ü                           | 860      | w        | 860      | Ü             | 860      | w                                            |          | <del>U</del>  | 830      | 3             | 820      |              |
| 4-Nitrophenol               | 1700  | 870                                              | w  | 870      | w           | 790      | w  |          | <del>  </del>               | 860      | Ü        | 860      | <del>UJ</del> | 860      | UJ<br>UJ                                     | 810      | Ü             | 830      | <u> </u>      | 820      | <u>w</u>     |
| Dibenzofuran                | 330   | 360                                              | UJ | 360      | W           | 330      | w  | 350      | <del>\(\frac{1}{12}\)</del> | 350      | UJ       | 360      | <u>ni</u>     | 360      | UJ<br>03                                     | 330      | W             | 340      | <u> </u>      | 340      | 띠            |
| 2,4-Dinitrotoluene          | 330   | 360                                              | UJ | 360      | UJ          | 330      | w  |          | ü                           | 350      | ÜJ       | 360      | UJ            | 360      | UJ                                           | 330      | W             | 340      | 3             | 340      | lin<br>Lin   |
| Diethylphthalate            | 330   | 360                                              | UJ | 360      | IJ          | 330      | w  | 350      | Ü                           | 350      | w        | 360      | Ü             | 360      | UJ                                           | 330      | w             | 340      | 3             | 340      |              |
| 4-Chlorophenyl-phenyl ether | 330   | 360                                              | UĴ | 360      | UJ          | 330      | w  | 350      | UJ.                         | 350      | w        | 360      | Ü             | 360      | w                                            | 330      | <del></del>   | 340      | Ü             | 340      |              |
| Fluorene                    | 330   | 360                                              | UJ | 360      | UJ          | 330      | ü  |          | 3                           | 350      | w        | 360      | ÜJ            | 360      | <del>U</del>                                 | 330      | UJ            | 340      | 53            | 340      |              |
| 4-Nitroaniline              | 1700  | 870                                              | UĴ | 870      | IJ          | 790      | ü  |          | 3                           | 860      | w        | 860      | <del>UJ</del> | 860      | UJ                                           |          | UJ<br>03      | 830      | <u> </u>      | 820      | <del> </del> |
| 4,6-Dinitro-2-methylphenol  | 1700  | 870                                              | UJ | 870      | W           | 790      | UJ |          | 3                           | 860      | UJ       |          | ÜĴ            | 860      | UJ                                           | 810      | w             | 830      | IJ            | 820      | w            |
| N-Nitrosodiphenylamine      | 330   | 360                                              | UJ | 360      | IJ          | 330      | UJ | 350      | 3                           | 350      | Ü        | 360      | ີ້ໜຶ່         | 360      | 3                                            | 330      | Ü             | 340      | 3             | 340      |              |
| 4-Bromophenyl-phenylether   | 330   | 360                                              | IJ | 360      | w           | 330      | Ü  | 350      | <u> </u>                    | 350      | w        |          | Ü             | 360      | 3                                            | 330      | n<br>n        | 340      | <u>3</u>      | 340      | UJ           |
| Hexachlorobenzene           | 330   | 360                                              | W  | 360      | IJ          | 330      | Ü  |          | Ü                           | 350      | Ü        | 1 1      | Ü             | 360      | Ü                                            | 330      | n1            | 340      | IJ            | 340      | W            |
| Pentachlorophenol           | 1700  | 870                                              | W  | 870      | IJ          | 790      | IJ |          | IJ                          | 860      | UJ       | 860      | Ü             | 860      | ÜJ                                           | 810      | Ü             |          | UJ            | 820      | w            |
| Phenanthrene                | 330   | 360                                              | UJ | 360      | ພ           | 330      | ÜJ |          | IJ                          | 350      | w        | 360      | Ü             | 360      | ü                                            | 330      | Ü             | 340      | UJ            | 340      | <del> </del> |
| Anthracene                  | 330   | 360                                              | IJ | 360      | Ü           | 330      | W  |          | Ü                           | 350      | w        |          | Ü             |          | 3                                            | 330      | 3             |          | Ü             | 340      | w            |
| Di-n-butylphthalate         | 330   | 360                                              | IJ | 360      | W           | 330      | ŪJ |          | Ü                           | 350      | w        |          | Ü             |          | 3                                            | 330      | 3             |          | UJ            | 340      | UJ<br>03     |
| Fluoranthene                | 330   | 360                                              | IJ | 360      | ŪJ          | 330      | IJ |          | W                           | 350      | UJ       |          | Ü             |          | w                                            | 330      | 3             |          | Ü             | 340      | UJ           |
| Pyrene                      | 330   | 360                                              | IJ | 360      | UJ          | 330      | ÜJ |          | IJ                          | 350      | w        |          | Ū             |          | W                                            | 330      | 3             |          | Ü             | 340      | lü<br>ü      |
| Butylbenzylphthalate        | 330   | 360                                              | บา | 360      | ໜ           |          | Ü  |          | IJ                          | 350      | 3        |          | ບັນ           |          | Ü                                            | 330      | Ü             |          | ບັນ           | 340      | Ü            |
| 3,3'-Dichlorobenzidine      | 330   | 360                                              | w  | 360      | IJ          |          | IJ |          | w                           | 350      | Ü        |          | ÜĴ            |          | Ü                                            | 330      | ü             |          | UJ            | 340      | ᇤ            |
| Benz(a)anthracene           | 330   | 360                                              | IJ | 360      | IJ          |          | IJ |          | พ                           | 350      | W        |          | w             |          | ü                                            | 330      | ü             |          | Ü             | 340      | W            |
| Chrysene                    | 330   | 360                                              | w  | 360      | IJ          |          | W  |          | Ü                           | 350      | W        |          | W             |          | Ü                                            | 330      | Ü             |          | ᇑ             |          | <del>u</del> |
| bis(2-Ethylhexyl)phthalate  | 330   | 360                                              | Ü  | 360      | UJ          |          | W  |          | w                           | 350      | IJ       |          | ŪJ            |          | w                                            | 330      | Ü             |          | ü             |          | <u> </u>     |
| Di-n-octylphthalate         | 330   | 360                                              | UJ | 360      | ÜJ          |          | ij |          | พิ                          | 350      | W        |          | w             |          | ü                                            | 330      | ü             |          | ü             |          | ü            |
| Benzo(b)fluoranthene        | 330   | 360                                              | W  | 360      | UJ          |          | Ü  |          | ᇤ                           | 350      | W        |          | ÜĴ            |          | ü                                            |          | w             |          | យី            |          | UJ           |
| Benzo(k)fluoranthene        | 330   | 360                                              | W  | 360      | UJ          |          | w  |          | w                           | 350      | UJ       |          | Ü             |          | ü                                            |          | Ü             |          | 띬             |          | W            |
| Benzo(a)pyrene              | 330   | 360                                              | UJ | 360      | υj          |          | Ü  |          | <del>IJ</del>               | 350      | พ        |          | w             |          | <del>w</del>                                 |          | <del>UJ</del> |          | ü             |          | UJ<br>UJ     |
| Indeno(1,2,3-cd)pyrene      | 330   | 360                                              | ÜĴ | 360      | UJ          |          | Ū  |          | ᇞ                           |          | Ü        |          | UJ            |          | <del></del>                                  |          | Ü             |          | <del>ij</del> |          | Ü            |
| Dibenz(a,h)anthracene       | 330   | 360                                              | UJ |          | UJ          |          | ÜĴ |          | ພື່                         |          | W        |          | <del>ij</del> |          | UJ                                           |          | UJ UJ         |          | 띬             |          | UJ           |
| Benzo(g,h,i)perylene        | 330   | 360                                              | UJ |          | ŪĴ          |          | ÜJ |          | Ü                           |          | UJ       |          | <del>]]</del> |          | บ็                                           |          | Ü             |          | 띬             |          | UJ           |
|                             |       |                                                  |    |          | 1           |          |    | 555      | 201                         |          |          | 000      | <del></del>   | 500      | -                                            | 330      | UJ            | 340      | UJ            | 340      | [UJ]         |

# HOLDING TIME SUMMARY

| SDG: B07Q52        | REVIEWER:        | RB              |                  | DATE: 04/19/     | /93                            | PAGE_                             | _OF_1_                                       |
|--------------------|------------------|-----------------|------------------|------------------|--------------------------------|-----------------------------------|----------------------------------------------|
| COMMENTS:          |                  |                 |                  |                  |                                |                                   |                                              |
| FIELD SAMPLE<br>ID | ANALYSIS<br>TYPE | DATE<br>SAMPLED | DATE<br>PREPARED | DATE<br>ANALYZED | PREP.<br>HOLDING<br>TIME, DAYS | ANALYSIS<br>HOLDING<br>TIME, DAYS | QUALIFIER                                    |
| B07Q52             | BNA              | 12/09/92        | 12/22/92         | 12/28/92         | 7                              | 40                                | J                                            |
| B07Q53             | BNA              | 12/09/92        | 12/22/92         | 12/28/92         | 7                              | 40.                               | J                                            |
| B07Q55             | BNA              | 12/09/92        | 12/22/92         | 12/28/92         | 7                              | 40                                | J                                            |
| B07Q56             | BNA              | 12/09/92        | 12/23/92         | 12/29/92         | 7                              | 40                                | J                                            |
| B07Q57             | BNA              | 12/09/92        | 12/22/92         | 12/28/92         | 7                              | 40                                | J                                            |
| B07Q58             | BNA              | 12/09/92        | 12/22/92         | 12/28/92         | 7                              | 40                                | J .                                          |
| B07Q59             | BNA              | 12/09/92        | 12/23/92         | 12/29/92         | 7                              | 40                                | J                                            |
| B07Q60             | BNA              | 12/09/92        | 12/22/92         | 12/29/92         | 7                              | 40                                | J                                            |
| B07Q61             | BNA              | 12/09/92        | 12/22/92         | 12/29/92         | 7                              | 40                                | J                                            |
| B07Q62             | BNA              | 12/09/92        | 12/22/92         | 12/29/92         | 7                              | 40                                | J                                            |
|                    |                  |                 |                  |                  |                                |                                   | <u>                                     </u> |
|                    | <u> </u>         |                 |                  |                  |                                |                                   |                                              |
|                    |                  |                 |                  |                  |                                |                                   |                                              |
|                    |                  |                 |                  |                  |                                |                                   |                                              |
|                    |                  |                 |                  |                  |                                |                                   |                                              |

# **BLANK AND SÁMPLE DATA SUMMARY**

| SDG:B07Q52  | REVIEWER: RB        |          |          | DAT | E: 04/19/ | 93           |               | PAGE_1              | _OF <u>_1</u> |
|-------------|---------------------|----------|----------|-----|-----------|--------------|---------------|---------------------|---------------|
| COMMENTS:   |                     |          |          |     |           |              |               |                     |               |
| SAMPLE ID   | COMPOUND            | RESULT   | Q        | RT  | UNITS     | 5X<br>RESULT | 10X<br>RESULT | SAMPLES<br>AFFECTED | QUALIFIER     |
| SBLK        | Di-n-butylphthalate | 89       | J        |     | ug/kg     | 445          | 890           | B07Q56              | U             |
|             | ,                   | <u> </u> |          |     |           |              |               |                     |               |
|             |                     |          |          |     |           |              |               |                     |               |
|             |                     | -        |          |     |           |              |               |                     |               |
|             |                     |          | <u> </u> |     |           |              |               |                     |               |
|             |                     |          |          |     |           |              |               |                     |               |
|             |                     |          |          |     |           |              |               | ]                   |               |
|             |                     |          |          |     |           |              |               |                     |               |
|             |                     |          |          |     |           |              |               |                     |               |
| <del></del> |                     |          |          |     |           |              |               |                     |               |
|             |                     |          |          |     |           |              |               |                     |               |
|             |                     |          |          |     |           |              |               |                     |               |
|             |                     |          |          |     |           |              |               |                     |               |

# HOLDING TIME SUMMARY

| SDG: B07Q52        | REVIEWER:        | RB              |                  | DATE: 04/19/     | /93                            | PAGE                              | _OF_1_    |
|--------------------|------------------|-----------------|------------------|------------------|--------------------------------|-----------------------------------|-----------|
| COMMENTS:          |                  |                 |                  |                  |                                |                                   |           |
| FIELD SAMPLE<br>ID | ANALYSIS<br>TYPE | DATE<br>SAMPLED | DATE<br>PREPARED | DATE<br>ANALYZED | PREP.<br>HOLDING<br>TIME, DAYS | ANALYSIS<br>HOLDING<br>TIME, DAYS | QUALIFIER |
| B07Q52             | BNA              | 12/09/92        | 12/22/92         | 12/28/92         | 7                              | 40                                | J         |
| B07Q53             | BNA              | 12/09/92        | 12/22/92         | 12/28/92         | 7                              | 40                                | J         |
| B07Q55             | BNA              | 12/09/92        | 12/22/92         | 12/28/92         | 7 .                            | 40                                | J         |
| B07Q56             | BNA              | 12/09/92        | 12/23/92         | 12/29/92         | 7                              | 40                                | 1         |
| B07Q57             | BNA              | 12/09/92        | 12/22/92         | 12/28/92         | 7                              | 40                                | J         |
| B07Q58             | BNA              | 12/09/92        | 12/22/92         | 12/28/92         | 7                              | 40                                | 1         |
| B07Q59             | BNA              | 12/09/92        | 12/23/92         | 12/29/92         | 7                              | 40                                | J         |
| B07Q60             | BNA              | 12/09/92        | 12/22/92         | 12/29/92         | 7                              | 40                                | 1         |
| B07Q61             | BNA              | 12/09/92        | 12/22/92         | 12/29/92         | 7                              | 40                                | J         |
| B07Q62             | BNA              | 12/09/92        | 12/22/92         | 12/29/92         | 7                              | 40                                | J         |
|                    |                  |                 |                  |                  |                                |                                   |           |
|                    |                  |                 |                  |                  | •                              | ·                                 |           |
|                    |                  |                 |                  |                  |                                |                                   |           |
|                    |                  | ]               |                  |                  |                                |                                   |           |

# 3-10

# **BLANK AND SAMPLE DATA SUMMARY**

|            |                     | <del></del> |   | 1        |           | <del></del>  |               | <u> </u>            | <del></del>  |
|------------|---------------------|-------------|---|----------|-----------|--------------|---------------|---------------------|--------------|
| SDG:B07Q52 | REVIEWER: RB        |             |   | DAT      | E: 04/19/ | 93           |               | PAGE_1              | _OF <u>1</u> |
| COMMENTS:  |                     |             |   |          |           |              |               |                     |              |
| SAMPLE ID  | COMPOUND            | RESULT      | Q | RT       | UNITS     | 5X<br>RESULT | 10X<br>RESULT | SAMPLES<br>AFFECTED | QUALIFIER    |
| SBLK       | Di-n-butylphthalate | 89          | J |          | ug/kg     | 445          | 890           | B07Q56              | U            |
|            |                     |             |   |          |           |              |               |                     |              |
|            |                     |             |   |          |           |              |               |                     |              |
|            |                     | · · · · ·   |   | <u> </u> |           |              |               |                     |              |
|            |                     |             |   |          |           |              |               |                     |              |
|            | <u> </u>            |             |   |          |           | <u> </u>     |               |                     |              |
|            |                     |             |   |          |           |              |               |                     |              |
|            |                     |             |   |          |           |              |               |                     |              |
|            |                     |             |   |          |           | ·            |               |                     |              |
|            |                     |             |   |          |           |              |               |                     | -            |
|            |                     |             |   |          |           |              |               | •                   |              |
|            |                     |             |   |          |           |              |               |                     |              |

# DATA QUALIFICATION SUMMARY

|                     |              | The state of the s |                         |
|---------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| SDG: B07Q52         | REVIEWER: RB | DATE: 04/19/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PAGE_1_OF_1_            |
| COMMENTS:           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| COMPOUND            | QUALIFIER    | SAMPLES<br>AFFECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | REASON                  |
| All BNA compounds   | J            | All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Holding Times Exceeded  |
| Di-n-butylphthalate | Ū            | B07Q56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lab Blank Contamination |
|                     | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| ·                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     | !            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| *                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |

Project: WESTINGHOUSE-HANFORD Laboratory: TMA

SEMIVOLATILE ORGANIC ANALYSIS, SOIL MATRIX, (ug/Kg)

| Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SDG: | B07Q63   |          |          |            |          |          |          |          |           |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|----------|----------|------------|----------|----------|----------|----------|-----------|----------|
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 120 120  | 100 NO   | B0/065   | B07Q66     | B07Q67   | B07Q68   | B07Q69   | B07Q71   | B07Q72    | B07Q73   |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | EB       |          |          |            |          | 1-11-021 | 1-N-1    | 1-M-071  | 1-N-07    | 1-N-071  |
| Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 12/18/92 | 12/18/92 | 12/18/92 | 12/18/92   | 12/18/92 | 12/18/92 | 12/18/92 | 12/18/92 | 12/18/92  | 12/16    |
| Extraction Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 12/23/92 | 12/23/92 | 12/23/92 | 12/23/92   | 12/23/92 | 12/23/92 | 12/23/92 | 12/23/92 | 12/23/92  | 12/23/92 |
| Analysis Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 01/22/93 | 01/22/93 | 01/22/93 | 01/22/93   | 01/22/93 | 01/22/93 | 01/22/93 |          | 01/22/93  | 01/22/93 |
| Semivolatile Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CFOL | Result Q | Result Q | Result Q | Result Q   | Result C | Result O | Result O | 미        | Regult 10 | Pos      |
| Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33   |          | 그        |          | _1         | -        | 9        |          |          |           | 3        |
| bis(2-Chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 330  |          | 340 U    |          | _          | -        | 330 U    | 330 U    | 350      | 350       | ء د      |
| 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330  | 330 U    | 340 U    | _        |            |          | 330 U    | 330 U    |          | 350       | ١        |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330  | _        |          | _        | <b>-</b> ∔ | -        | 330 U    | 330 U    | 350 U    | 350       |          |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330  | 00E      | 340 U    | _        | _          | 340<br>U | 330<br>U | 330 U    | 350 U    | 350 U     | 23 (     |
| Benzyl Alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330  | J 066    | 340 U    | _        | 340<br>U   |          | 330 U    | 330 U    | 350 U    | 350 U     |          |
| 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330  | J 066    | 340 U    | 346<br>U | _          |          | 330 U    | 330<br>U | 350 U    | 350 U     |          |
| 2-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 330  | 330 U    | 340 U    | 340 U    | _          |          | 330 U    | 330 U    | 350 U    | 350 U     | 360      |
| bis(2-Chioroisopropyt)Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ಜ್ಞ  | 330 U    | 340 JU   | 340 U    | 340<br>U   | _        | 330 U    |          | 350 U    | 350 U     | ان       |
| 4-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ಚ    | 330 U    | 340 U    | 340 U    | 340 U      |          | 330 U    | 330 U    | 350 U    | 350 U     | ယ        |
| N-Nitroso-di-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 330  |          | 340<br>U | 340 U    | 340 U      | 340 U    | 330 U    |          | 350 U    | 350 U     | ايو      |
| нехастногоепал <b>е</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 336  | 330 U    | 340      | 340      | 340 U      | 340 U    | 330 U    | 330<br>U | 350 U    | 350 U     | ပ္ခ      |
| Mitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | జ్ఞ  | 330 U    | 340<br>U | 340 U    | 340 U      | 340<br>U | 330 U    |          | 350 U    | 350 U     | 360      |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33   | 330<br>U | 340<br>U | 340 U    | 340 U      | 340<br>U | 330 U    | 330 U    | 350 U    | 350 U     | ပ္ခ      |
| Z-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33   | 330 U    | 340 U    | 340 U    | 340 U      | 340 U    |          |          | 350 U    | 350 U     | 360      |
| Z.4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330  |          | 340 U    | 340 U    | 340 U      | 340 U    | 330 U    |          | 350 U    |           | 360      |
| benzoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1700 |          |          | -        | 820 U      | 830 U    | 810 U    |          | 840 U    |           | 870      |
| DIS(2-Chloroetnoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8    | _        |          | 340<br>U | 340<br>U   | 340 U    | 330 U    | J 068    | 350 U    |           | 8        |
| 2,4-Dichiorophenor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33   |          | 340 U    | 340 U    | 340 U      | 340 U    | 330 U    | 330 U    | 350 U    | 350 U     | 360      |
| 1,2,4-1 ncnioropenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8    | _        | 340 U    | 340<br>U | 340 U      | 340 U    | 330 U    | 330 U    | 350 U    |           | မွ       |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8    |          | 340 U    | 340      | 340 U      | 340 U    | 330 U    | 330 U    | 350 U    |           | မ္တ      |
| +-Critoroaniine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88   | -        | _        |          | 340 U      | 340 U    | 330 U    |          | 350 U    |           | 360      |
| THE ACTION OF THE PROPERTY OF T | ĕ    | 330 0    | 340 U    | 340      | 340 U      | 340 U    | 330 U    | 330 U    | 350 U    | 350 C     | မ္တ      |
| 4-Chloro-3-memyphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38   |          | -        | 340 U    | 340 U      | 340 U    | 330 U    | 330 U    | 350 U    | 350 U     | 8        |
| C-Intelligent Control of Control   | ě    |          |          | 340      | 340        | 340 U    | 330 U    | 330 U    | 350 U    | 350 U     | œ        |
| riexachiorocyclopentagiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33   |          |          | 340 U    | 340 U      | 340 U    | 330 U    | 330 U    | 350 U    | 350 U     | ×        |
| Z,4,5-inchlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330  |          |          | 340 U    | 340 U      | 340 U    | 330 U    | 330 U    | 350 U    | 350 U     | မ္တ      |
| 2,4,5-I richiorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1700 | 790 U    |          | 830 U    | 820 U      | 830 U    |          | 810 U    | 840<br>U | 946<br>U  | 870      |
| 2-Chloronaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330  | 330 U    | 340 U    | 340 U    | 340 U      | 340 U    |          | 330 U    |          | 350 U     | 360      |
| 2-Nitroaniline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1700 | 790 U    | 820 U    | 830 U    | 820 U      |          | 810 U    | 810 U    | 846<br>U | 840<br>U  | 870      |
| Dimethylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330  | 330 U    | 340 U    | 340 U    | _          |          | 1        |          | 350 U    | 350 U     | 360      |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 336  | 330 U    | 340 U    | 340 U    | 340 U      | 340<br>U | 330 U    | -        | 350 U    | 350 U     | 360      |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 330  | 330 U    | 340 U    | 340<br>U | 340<br>U   | 340<br>U | _1       | _        | 350 U    | 350 U     | 3        |

# DATA QUALIFICATION SUMMARY

| , , , , , , , , , , , , , , , , , , , |              |                     |                         |
|---------------------------------------|--------------|---------------------|-------------------------|
| SDG: B07Q52                           | REVIEWER: RB | DATE: 04/19/93      | PAGE_1_OF_1_            |
| COMMENTS:                             |              | ,                   |                         |
| COMPOUND                              | QUALIFIER    | SAMPLES<br>AFFECTED | REASON                  |
| All BNA compounds                     | J            | All                 | Holding Times Exceeded  |
| Di-n-butylphthalate                   | ប            | B07Q56              | Lab Blank Contamination |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       | ·            |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
| •                                     |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |
|                                       |              |                     |                         |

| Project: WESTINGHOUSE-H/    | NFORD | )        |    | ]        |   |          |     |          |        |             |          |    |          |    |          |          |          |   |          |
|-----------------------------|-------|----------|----|----------|---|----------|-----|----------|--------|-------------|----------|----|----------|----|----------|----------|----------|---|----------|
| Laboratory: TMA             |       |          |    |          |   |          |     |          |        |             |          |    |          |    |          |          |          |   |          |
| Case                        | SDG:  | B07Q63   |    |          |   |          |     |          |        |             |          |    |          |    |          |          |          |   |          |
| Sample Number               |       | B07Q63   |    | B07Q64   | , | B07Q65   |     | B07Q66   | B07Q   | 67          | B07Q68   |    | B07Q69   | •  | B07Q71   |          | B07Q72   |   | B07Q73   |
| Location                    |       | 120-N-   | 1  | 120-N-   | 1 | 120-N-1  | 1   | 120-N-1  | 120-N  | I-1         | 120-N-1  |    | 120-N-1  | ١. | 120-N-1  | $\dashv$ | 120-N-1  | 1 | 120-N-1  |
| Remarks                     | _     | EB       |    |          |   |          |     |          | T .    |             | 1        |    |          |    |          | $\neg$   | DUP      |   |          |
| Sample Date                 |       | 12/18/92 |    | 12/18/9  |   | 12/18/92 | ?   | 12/18/92 | 12/18/ | 92          | 12/18/92 |    | 12/18/92 | ?  | 12/18/92 | ┪        | 12/18/92 | 2 | 12/18/92 |
| Extraction Date             |       | 12/23/92 |    | 12/23/9  | 2 | 12/23/92 |     | 12/23/92 | 12/23/ | 92          | 12/23/92 |    | 12/23/92 | 2  | 12/23/92 | $\neg$   | 12/23/92 | ? | 12/23/92 |
| Analysis Date               |       | 01/22/93 |    | 01/22/93 | 3 | 01/22/93 | )   | 01/22/93 | 01/22  | 93          | 01/22/93 |    | 01/22/93 |    | 01/22/93 |          | 01/22/93 | } | 01/22/93 |
| Semivolatile Compound       | CROL  |          | Q  |          | Q | Result   | Q   | Result Q | Resul  | i Q         | Result   | Q  | Result   | Q  | Result   | 0        | Result   | Q | Result Q |
| Phenoi                      | 330   | ,        | Ū  | 340      | U | 340      | Ū   | 340 U    | 34     | ŌŪ          | 330      | U  | 330      | Ü  | 350      | U        | 350      | U | 360 U    |
| bis(2-Chloroethyl)ether     | 330   | 330      | U  | 340      | U | 340      | U   | 340 U    |        |             | 330      | Ü  | 330      | Ü  | 350      | U        | 350      | U | 360 U    |
| 2-Chlorophenol              | 330   | 330      | U  | 340      | U | 340      | U   | 340 U    | 34     | <u> 0 U</u> | 330      | U  | 330      | U  | 350      | U        | 350      | U | 360 U    |
| 1,3-Dichlorobenzene         | 330   | 330      | U  | 340      | U | 340      | Ū   | 340 U    |        |             | 330      | U  | 330      | U  | 1        | U        |          | U | 360 U    |
| 1,4-Dichlorobenzene         | 330   | 330      | U  | 340      | U | 340      | Ū   | 340 U    | 1 -    |             | 330      | U  | 330      | Ū  | 350      | U        | 350      | U | 360 U    |
| Benzyl Alcohol              | 330   | 330      | U  | 340      | U | 340      | U   | 340 U    | 1 -    |             | 330      | Ū  | 330      | Ū  | 350      | J        | 350      | Ü | 360 U    |
| 1,2-Dichlorobenzene         | 330   | 330      | U  | 340      | U | 340      | U   | 340 U    | 34     |             | 330      | U  | 330      | Ü  | 350      | J        | 350      | U | 360 U    |
| 2-Methylphenol              | 330   |          | U  | 340      | U | 340      | Ü   | 340 U    | 34     |             | 330      | U  | 330      | U  | 350      | J        | 350      | U | 360 U    |
| bis(2-Chioroisopropyl)Ether | 330   |          | Ü  | 340      | U | 340      | Ū   | - 340 U  | 34     | <u> 0 U</u> | 330      | Ū  | 330      | U  | 350      | J        | 350      | U | 360 U    |
| 4-Methylphenol              | 330   |          | Ü  | 340      | Ü | 340      | Ü   | 340 U    | 34     | 0 U         | 330      | U  | 330      | U  | 350      | J        | 350      | U | 360 U    |
| N-Nitroso-di-n-propylamine  | 330   |          | U  | 340      | U | 340      | Ų   | 340 U    | 34     | 0 U         | 330      | U  | 330      | U  | 350      | J        | 350      | U | 360 U    |
| Hexachloroethane            | 330   |          | U  | 340      | U | 340      | U   | 340 U    | 34     | 0 U         | 330      | U  | 330      | U  | 350      | J        | 350      | U | 360 U    |
| Nitrobenzene                | 330   | 330      | U  | 340      | U | 340      | U   | 340 U    | 34     | - 1 -       | 330      | U  | 330      | Ū  | 350      | J        | 350      | U | 360 U    |
| tsophorone                  | 330   | 330      | 5  | 340      | U | 340      | 2   | 340 U    | 34     |             | 330      | U  | 330      | U  | 350      | 丌        | 350      | U | 360 U    |
| 2-Nitrophenol               | 330   |          | 5  | 340      | U | 340      | 2   | 340 U    | 34     | <u> </u>    | 330      | Ū  | 330      | Ū  |          | 1        | 350      | U | 360 U    |
| 2,4-Dimethylphenol          | 330   |          | 5  | 340      | Ų | 340      | د   | 340 U    | 34     | <u> 0 U</u> | 330      | U  | 330      | Ü  | 350      | J        | 350      | U | 360 U    |
| Benzoic acid                | 1700  | 790      | ح  | 820      | U | 830      | ٦   | 820 U    | 83     |             | 7.7      | U. | 810      | Ū  | ,,       | Л        | 840      | U | 870 U    |
| bis(2-Chloroethoxy)methane  | 330   |          | 5  | 340      | U | 340      | ر   | 340 U    | 34     |             | 330      | U  | 330      | Ū  | [        | ĴΠ       | 350      | U | 360 U    |
| 2,4-Dichlorophenol          | 330   | 330      | 5  | 340      | U | 340      | ر د | 340 U    | 34     |             | 330      | U  | 330      | Ų  | 350      | J        | 350      | U | 360 U    |
| 1,2,4-Trichlorobenzene      | 330   |          | ے  | 340      | U | 340      | ح   | 340 U    | 34     |             | 330      | U  | 330      | U  |          | J        | 350      | U | 360 U    |
| Naphthalene                 | 330   |          | כ  | 340      | U | 7 : 7    | U   | 340 U    | 34     |             | 330      | Ū  | 330      | U  | 350      | J        |          | Ū | 360 U    |
| 4-Chloroaniline             | 330   |          | اد | 340      | U | 340      | U   | 340 U    | 34     |             | 330      | U  | 330      | U  | 350 U    | Л        |          | U | 360 U    |
| Hexachlorobutadiene         | 330   |          | U  | 340      | U | 340      | כ   | 340 U    | 34     |             | 1        | U  | 330      | J  | 350 U    | J        | 350      | U | 360 U    |
| 4-Chloro-3-methylphenol     | 330   |          |    | 340      | U | 340      | U   | 340 U    | 34     |             |          | Ü٠ | 330      | 5  | 350 U    | J        |          | 5 | 360 U    |
| 2-Methylnaphthalene         | 330   |          | U  | 340      | U | 340      | U   | 340 U    | 34     |             | 1 1      | Ū  | 330      | U  | 350 l    | IJ       |          | U | 360 U    |
| Hexachlorocyclopentadiene   | 330   | ,        | υ  | 340      | U | ,        | U   | 340 U    | 34     |             |          | U  | 330      | U  | 350 U    | )        | 350      | U | 360 U    |
| 2,4,6-Trichlorophenol       | 330   | 330      | U  | 340      | U | 340      | U   | 340 U    | 34     |             |          | U  | 330      | 5  | 350 U    | 1        | 350      | U | 360 U    |
| 2,4,5-Trichlorophenoi       | 1700  |          | U  | 820      | ح | 830      | U   | 820 U    | 83     |             |          | Ų  | 810      | حا |          | 1        | 840      | U | 870 U    |
| 2-Chloronaphthalene         | 330   |          | U  | 340      | ے | 9.9      | Ü   | 340 U    | 34     |             |          | Ū  | 330      | U  | 350 U    | 1        | 350      | U | 360 U    |
| 2-Nitroaniline              | 1700  |          | U  | 820      | ح |          | U   | 820 U    | 83     |             | 1        | U  | 810      | U  | 840 L    | 丌        |          | U | 870 U    |
| Dimethylphthalate           | 330   |          | U  | 340      | د |          | U   | 340 U    | 34     | 0 U         | 330      | U  | 330      | U  | 350 U    | 丌        | 350      | U | 360 U    |
| Acenaphthylene              | 330   |          | Ü  | 340      | U |          | U   | 340 U    | 34     |             | 330      | Ū  |          | Ü  | 350 L    | 丌        | 350      | U | 360 U    |
| 2,6-Dinitrotoluene          | 330   | 330      | U  | 340      | C | 340      | Ū   | 340 U    | 34     | <u> </u>    | 330      | U  | 330      | U  | 350 L    | 丌        | 350      | J | 360 U    |

| Sample Number               | SDG: B     |          |          | 1        |   |          |          |          |    |          |                |          |   |          |       |               |              |          |                |          |
|-----------------------------|------------|----------|----------|----------|---|----------|----------|----------|----|----------|----------------|----------|---|----------|-------|---------------|--------------|----------|----------------|----------|
| Sample Number               | SDG: B     |          |          |          |   |          |          |          |    |          |                |          |   |          |       |               |              |          |                |          |
|                             |            | 107Q63   |          | -        |   |          |          |          |    |          |                |          |   |          |       |               |              |          |                |          |
| Legation                    |            | B07Q63   | 1        | B07Q64   |   | B07Q65   |          | B07Q66   |    | B07Q67   |                | B07Q68   | - | B07Q69   |       | B07Q71        | <u> </u>     | B07Q72   |                | B07Q73   |
| Location                    |            | 120-N-   |          | 120-N-   |   | 120-N-1  | <u> </u> | 120-N-1  | ı  | 120-N-1  | •              | 120-N-1  | ٦ | 120-N-1  | · · · | 120-N-1       |              | 120-N-1  | _              | 120-N-1  |
| Remarks                     |            | EB       |          |          |   | 1        |          | 1        |    | 720 11   | <u> </u>       | 120 10-1 | - | 120-11-  |       | 120-14-1      |              | DUP      | -              | 120-14-1 |
| Sample Date                 |            | 12/18/92 | 2        | 12/18/92 | 2 | 12/18/92 |          | 12/18/92 |    | 12/18/92 | ,              | 12/18/92 |   | 12/18/92 | ,     | 12/18/92      |              | 12/18/92 | _              | 12/18/92 |
| Extraction Date             |            | 12/23/92 | 2        | 12/23/92 | 2 | 12/23/92 |          | 12/23/92 |    | 12/23/92 |                | 12/23/92 | - | 12/23/92 |       | 12/23/92      |              | 12/23/92 | $\dashv$       | 12/23/92 |
| Analysis Date               |            | 01/22/93 | 3        | 01/22/93 | 3 | 01/22/93 | 3        | 01/22/93 |    | 01/22/93 |                | 01/22/93 |   | 01/22/93 |       | 01/22/93      | _            | 01/22/93 |                | 01/22/93 |
|                             | <b>RQL</b> | Result   | Q        | Result   | Q | Result   | Q        |          | Q  |          | Q              | Result ( |   |          | Q     |               | Q            | Result   |                | Result Q |
|                             | 1700       | 790      | U        | 820      | Ü | 830      | U        | 820      | Ū  | 830      | Ū              | 810 L    | _ | 810      | Ū     |               | Ū            | 840      |                | 870 U    |
| Acenaphthene                | 330        | 330      | U        | 340      | Ü | 340      | U        | 340      | U  | 340      | Ū              | 330 L    |   | 330      | Ŭ     |               | <del>Ŭ</del> | 350      |                | 360 U    |
|                             | 1700       | 790      | U        | 820      | U | 830      | U        | 820      | U  | 830      | Ū              | 810 L    |   | 810      | Ū     | <del></del>   | Ŭ            | 840      |                | 870 U    |
|                             | 1700       | 790      | U        | 820      | U | 830      | U        | 820      | U  | 830      | Ū              | 810 L    | _ | 810      | Ü     |               | Ŭ            | 840      |                | 870 U    |
| Dibenzofuran                | 330        | 330      | U        | 340      | Ū | 340      | U        |          | U  | 340      | Ū              | 330 L    | , | 330      | Ū     |               | Ŭ            | 350      | _              | 360 U    |
| 2,4-Dinitrotoluene          | 330        | 330      | U        | 340      | Ü | 340      | U        |          | U  | 340      | Ū              | 330 L    | П | 330      | Ü     |               | Ŭ            | 350      | _              | 360 U    |
| Diethylphthalate            | 330        | 330      | U        | 340      | Ū | 340      | Ū        | 340      | U  | 340      | U              | 330 L    | Г | 330      | Ū     |               | Ŭ            | 350      |                | 360 U    |
| 4-Chlorophenyl-phenyl ether | 330        | 330      | U        | 340      | U | 340      | Ū        | 340      | J  | 340      | U              | 330 L    |   | 330      | Ü     |               | <del>Ŭ</del> |          | Ĭ              | 360 Ü    |
| Fluorene                    | 330        | 330      | U        | 340      | U | 340      | Ü        | 340      | U  | 340      | ט              | 330 L    | , | 330      | Ü     |               | Ŭ            |          | ij             | 360 U    |
|                             | 1700       | 790      | U        | 820      | U | 830      | Ü        | 820      | U  | 830      | U              | 810 L    | П | 810      | Ū     | <del></del> + | Ū            |          |                | 870 U    |
| 4,6-Dinitro-2-methylphenol  | 1700       | 790      | U        | 820      | U | 830      | Ü        | 820      | U  | 830      | U              | 810 L    |   | 810      | Ū     |               | Ŭ            |          |                | 870 U    |
| N-Nitrosodiphenylamine      | 330        | 330      | U        | 340      | U | 340      | U        | 340      | Ü  | 340      | ט              | 330 L    |   | 330      | Ü     |               | Ŭ            | 350      |                | 360 U    |
| 4-Bromophenyl-phenylether   | 330        | 330      | U        | 340      | U | 340      | U        | 340      | Ü  | 340      | υ              | 330 L    | П | 330      | Ü     |               | Ŭ            | 350      |                | 360 U    |
| Hexachlorobenzene           | 330        | 330      | U        | 340      | U | 340      | U        | 340      | U  | 340      | U              | 330 U    | П | -        | Ū     | +             | Ū            | 350 1    | <del>i  </del> | 360 U    |
| Pentachlorophenol           | 1700       | 790      | U        | 820      | U | 830      | U        | 820      | Ü  | 830      | U              | 810 U    | П | 810      | U     | 840           | Ū            | 840 (    |                | 870 U    |
| Phenanthrene                | 330        | 330      | U        | 340      | U | 340      | U        | 340      | Ü  | 340      | U              | 330 U    | П | 330      | U     | 350           | Ū            | 350 t    |                | 360 U    |
| Anthracene                  | 330        | 330      | U        | 340      | Ü | 340      | U        | 340      | Ū  | 340      | 5              | 330 Ü    | П | 330      | U     | 350           | Ū            | 350 L    | <u>ו</u>       | 360 U    |
| Di-n-butylphthalate         | 330        | 330      | ح        | 340      | U | 340      | U        | 340      | Ū  | 340      | U              | 330 U    | П |          | U     | 350           | Ū            | 350 L    | <del>.</del>   | 360 U    |
| Fluoranthene                | 330        | 330      | حا       | 340      | U | 340      | U        | 340      | Ü  | 340      | U              | 330 Ü    | П | 330      | U     |               | Ū            | 350 U    | <del>j  </del> | 360 U    |
| Pyrene                      | 330        | 330      | ح        | 340      | 5 | 340      | υ        | 340      | Ü  | 340      | U              | 330 U    | П | 330      | U     | 350           | Ü            | 350 L    | <del>]</del>   | 360 U    |
| Butylbenzylphthalate        | 330        | 330      | U        | 340      | U | 340      | U        | 340      | Ü  | 340      | U              | 330 U    | ╗ | 330      | U     | 350           | ייט          | 350 U    | ,              | 360 U    |
| 3,3'-Dichlorobenzidine      | 330        | 330      | J        | 340      | S | 340      | U        | 340      | U  | 340      | Ū              | 330 U    | ⊓ | 330      | U     | 350           | Ü            | 350 L    | <del>,  </del> | 360 U    |
| Benz(a)anthracene           | 330        | 330      | <b>C</b> | 340      | S | 340      | Ü        | 340      | U  | 340      | U              | 330 U    | П | 330      | U     | 350           | U            | 350 t    | <del>,  </del> | 360 U    |
| Chrysene                    | 330        | 330      | C        | 340      | U |          | U        | 340      | U  | 340      | U              | 330 U    | П | 330      | Ü     | 350           | Ū            | 350 (    | <del>,</del>   | 360 U    |
| bis(2-Ethylhexyl)phthalate  | 330        | 330      | Ü        | 340      | C | 1        | U        | 340      | Ū  | 340      | U              | 330 U    | 寸 | 330      | Ü     | 350           | ו            | 350 Ü    | 7              | 360 U    |
| Di-n-octylphthalate         | 330        | 330      |          | 340      | U | 340      | Ū        | 340      | ŪΪ | 340      | U              | 330 U    | 寸 | 330      | Ū     | 350           | Ū            | 350 L    | ;              | 360 U    |
| Benzo(b)fluoranthene        | 330        | 330      | C        | 340      | U | 340      | U        | 340      | Ü  | 340      | Ū              | 330 Ū    |   | 330      | Ū     | 350           | Ū            | 350 L    | 1              | 360 U    |
| Benzo(k)fluoranthene        | 330        | 330      | U        |          | U | 340      | U        | 340      | U  | 340      | U              | 330 U    | T |          | Ū     |               | ול           | 350 L    |                | 360 U    |
|                             | 330        | 330      | U        | 340      | Ū |          | U        | 340      | Ü  | 340      | Ū              | 330 U    | 7 |          | Ū     |               | 7            | 350 L    | _              | 360 U    |
|                             | 330        | 330      | U        | 340      | Ū | 340      | U        | 340      | υ  | 340      | ᆔ              | 330 U    | 7 |          | Ū     |               | ן נ          | 350 L    |                | 360 U    |
|                             | 330        | 330      | U        |          | U |          | U        | 340      | Ū  |          | Ū              | 330 U    | ┪ |          | Ū     | 350 l         |              | 350 L    |                | 360 U    |
| Benzo(g,h,l)perylene        | 330        | 330      | U        | 340      | U | 340      | U        | 340      | Ū  | 340      | <del>u l</del> | 330 U    | 7 |          | ŬΪ    | 350 li        |              | 350 L    |                | 360 U    |

| SDG: B07Q63 | REVIEWER: RB        |        |   | DAT | E: 4/13/9 | 3            |               | PAGE_1_C                                                                           | )F_1_     |
|-------------|---------------------|--------|---|-----|-----------|--------------|---------------|------------------------------------------------------------------------------------|-----------|
| COMMENTS:   |                     |        |   |     |           |              |               |                                                                                    |           |
| SAMPLE ID   | COMPOUND            | RESULT | Q | RT  | UNITS     | 5X<br>RESULT | 10X<br>RESULT | SAMPLES<br>AFFECTED                                                                | QUALIFIER |
| SBLK1223SI  | Di-n-butylphthalate | 92     | J |     | ug/Kg     | 460          | 920           | B07Q64, B07Q65,<br>B07Q66, B07Q67,<br>B07Q68, B07Q69,<br>B07Q71, B07Q72,<br>B07Q73 | Ŭ         |
|             |                     |        |   |     |           |              |               |                                                                                    |           |
|             |                     |        |   |     | <u> </u>  |              |               |                                                                                    |           |
|             |                     |        |   |     |           |              |               |                                                                                    |           |
|             |                     |        |   |     | _         |              |               |                                                                                    |           |
|             |                     |        |   |     |           |              |               |                                                                                    |           |
|             |                     |        |   |     |           |              |               |                                                                                    |           |
|             |                     | Ī.     |   |     |           |              |               |                                                                                    |           |
|             |                     |        |   |     |           |              |               |                                                                                    |           |
|             |                     |        |   |     |           |              |               |                                                                                    |           |
| <del></del> |                     |        |   |     |           |              |               |                                                                                    |           |
|             |                     |        |   |     |           |              | -             |                                                                                    |           |
|             |                     |        |   |     |           |              | <del></del>   |                                                                                    |           |
|             |                     |        |   |     |           |              |               |                                                                                    |           |

| Project: WESTINGHOUSE-HA    | NFORD  |          |    | 1        |    |                                                  |     |          |   |          |   |          |          |          |   |          |              |          |              |          |      |
|-----------------------------|--------|----------|----|----------|----|--------------------------------------------------|-----|----------|---|----------|---|----------|----------|----------|---|----------|--------------|----------|--------------|----------|------|
| Laboratory: TMA             |        |          |    | 1        |    |                                                  |     |          |   |          |   |          |          |          |   |          |              |          |              |          |      |
| Case                        | SDG: E | 307Q63   |    | 1        |    |                                                  |     |          |   |          |   |          |          |          |   |          |              |          |              |          |      |
| Sample Number               |        | B07Q63   |    | B07Q64   |    | B07Q65                                           |     | B07Q66   |   | B07Q67   |   | B07Q68   | 1        | B07Q69   |   | B07Q71   |              | B07Q72   |              | B07Q73   |      |
| Location                    |        | 120-N-   | 1  | 120-N-   |    | 120-N-                                           |     | 120-N-1  |   | 120-N-1  |   | 120-N-1  | _        | 120-N-1  |   | 120-N-   | <del>-</del> | 120-N-   |              | 120-N-1  | _    |
| Remarks                     |        | EB       |    |          |    | <del>                                     </del> |     |          |   |          |   | 1.00     | $\dashv$ |          |   |          | •            | DUP      | <u> </u>     | 120 11   | _    |
| Sample Date                 |        | 12/18/92 | ?  | 12/18/92 | 2  | 12/18/92                                         | 2   | 12/18/92 | 2 | 12/18/92 |   | 12/18/92 | ┪        | 12/18/92 | , | 12/18/92 | <del></del>  | 12/18/92 | <del>-</del> | 12/18/92 |      |
| Extraction Date             |        | 12/23/92 | 2  | 12/23/92 | 2  | 12/23/92                                         |     | 12/23/92 |   | 12/23/92 |   | 12/23/92 |          | 12/23/92 |   | 12/23/92 |              | 12/23/92 |              | 12/23/92 |      |
| Analysis Date               |        | 01/22/93 | •  | 01/22/93 | 3  | 01/22/93                                         |     | 01/22/93 |   | 01/22/93 |   | 01/22/93 |          | 01/22/93 |   | 01/22/93 |              | 01/22/93 |              | 01/22/93 | _    |
| Semivolatile Compound       | CROL   | Result   | Q  | Result   | Q  | Result                                           | Q   | Result   | Q | Result   | Q | Result Q |          |          | Q |          | Q            |          | Q            |          | Q    |
| 3-Nitroaniline              | 1700   | 790      | U  | 820      | U  | 830                                              | U   | 820      | U | 830      | Ū | 810 U    |          |          | Ū | 840      | ιō           | 840      | Ū-           |          | ū    |
| Acenaphthene                | 330    | 330      | Ü  | 340      | U  | 340                                              | U   | 340      | U | 340      | Ū | 330 U    | _        |          | Ū | 350      | ŭ            | 350      | Ū            |          | ŭ    |
| 2,4-Dinitrophenol           | 1700   | 790      | U  | 820      | U  | 830                                              | U   | 820      | U | 830      | Ū | 810 U    | 7        |          | Ū | 840      | Ŭ            | 840      | Ū            |          | Ŭ    |
| 4-Nitrophenol               | 1700   | 790      | Ü  | 820      | U  | 830                                              | U   | 820      | U | 830      | Ū | 810 U    | +        |          | Ū | 840      | Ū            | 840      | Ū            |          | Ŭ    |
| Dibenzofuran                | 330    | 330      | U  | 340      | U  | 340                                              | U   | 340      | U | 340      | Ü | 330 U    | 7        |          | Ū | 350      | ŭ            | 350      | Ū            |          | Ŭ    |
| 2,4-Dinitrotoluene          | 330    | 330      | U  | 340      | U  | 340                                              | U   | 340      | U | 340      | U | 330 U    | 7        |          | Ū | 350      | Ŭ            | 350      | Ū            |          | Ŭ    |
| Diethylphthalate            | 330    | 330      | Ü  | 340      | U  | 340                                              | Ü   | 340      | U | 340      | U | 330 U    |          |          | U | 350      | Ū            | 350      | Ū            |          | Ū    |
| 4-Chlorophenyl-phenyl ether | 330    | 330      | Ü  | 340      | Ų  | 340                                              | U   | 340      | U | 340      | Ü | 330 U    | 1        | 330      | U | 350      | Ū            | 350      | Ū            |          | Ū    |
| Fluorene                    | 330    | 330      | Ü  | 340      | v  | 340                                              | U   | 340      | U | 340      | υ | 330 U    | +        | 330      | Ū | 350      | Ū            | 350      | Ū            |          | Ū    |
| 4-Nitroaniline              | 1700   | 790      | Ü  | 820      | U  | 830                                              | U   | 820      | U | 830      | U | 810 U    | 7        |          | Ū | 840      | Ū            | 840      | Ū            |          | Ŭ    |
| 4,6-Dinitro-2-methylphenol  | 1700   | 790      | U  | 820      | U  | 830                                              | Ü   | 820      | U | 830      | U | 810 U    | †        |          | U | 840      | Ū            | 840      | Ū            |          | ŭ    |
| N-Nitrosodiphenylamine      | 330    | 330      | U  | 340      | U  | 340                                              | Ü   | 340      | U | 340      | Ü | 330 U    | 7        | 330      | Ü | 350      | U            | 350      | Ū            |          | Ū    |
| 4-Bromophenyl-phenylether   | 330    | 330      | U  | 340      | U  | 340                                              | U   | 340      | U | 340      | U | 330 U    | 7        | 330      | Ų | 350      | U            | 350      | U            |          | Ū    |
| Hexachlorobenzene           | 330    | 330      | Ū  | 340      | U  |                                                  | U   | 340      | Ų | 340      | U | 330 U    | ┪        | 330      | Ū | 350      | U            | 350      | U            | 360      | Ū    |
| Pentachlorophenol           | 1700   | 790      | حا | 820      | Ü  | 830                                              | U   | 820      | Ü | 830      | U | 810 U    | 1        | 810      | U | 840      | U            | 840      | U            | 870      | Ū    |
| Phenanthrene                | 330    | 330      | ح  | 340      | U  | 340                                              | U   | 340      | U | 340      | U | 330 U    | 1        | 330      | U | 350      | Ü            | 350      | Ū            | 360      | Ū    |
| Anthracene                  | 330    | 330      | حا | 340      | U  | 340                                              | U   | 340      | Ü | 340      | U | 330 U    | T        | 330      | U | 350      | Ü            | 350      | Ū            | 360 l    | U    |
| Di-n-butylphthalate         | 330    | 330      | U  | 340      | 5  | 340                                              | اد  | 1        | U | 340      | U | 330 U    | T        | 330      | U | 350      | Ü            | 350      | Ü            | 360 U    | Ū    |
| Fluoranthene                | 330    | 330      | ح  | 340      | U  | 340                                              | 5   | 1        | Ü | 340      | U | 330 U    | T        |          | U | 350      | Ü            | 350      | U            | 360 l    | Ū    |
| Pyrene                      | 330    | 330      | ح  | 340      | حا | 340                                              | U   |          | Ü | 340      | U | 330 U    | T        | 330      | U | 350      | Ü            | 350      | U            | 360 L    | Ū    |
| Butylbenzylphthalate        | 330    | 330      | ح  | 340      | د  | 340                                              | ے ا | 1        | Ü | 340      | Ü | 330 U    | T        | 330      | U | 350      | U            | 350      | U            | 360 l    | Ū    |
| 3,3'-Dichlorobenzidine      | 330    | 330      | ט  | 340      | ٥  | 340                                              | رد  | 1        | C | 340      | Ü | 330 U    | T        | 1        | Ū | 350      | 5            | 350      | Ü            | 360 l    | Ū    |
| Benz(a)anthracene           | 330    | 330      | υ  | 340      | ح  | 340                                              | ے   | 340      | C | 340      | U | 330 U    | T        | 330      | Ü | 350      | حا           | 350      | υ            | 360 L    | U    |
| Chrysene                    | 330    | 330      | U  | 340      | ح  | 340                                              | 5   | 1        | U | 340      | U | 330 U    | T        |          | Ü | 350      | U            | 350      | U            | 360 t    | Ū    |
| bis(2-Ethylhexyl)phthalate  | 330    | 330      | ٦  | 340      | ٥  | 340                                              | ح   |          | U | 340      | U | 330 U    | 1        | 330      | U | 350      | U            | 350      | Ū            | 360 L    | U    |
| Di-n-octylphthalate         | 330    | 330      | ٥  | 340      | Ų  | 340                                              | اد  | 340      | Ü | 340      | U | 330 U    | T        | 330      | U | 350      | U            | 350      | Ū            | 360 L    | Ū    |
| Benzo(b)fluoranthene        | 330    | 330      | U  | 340      | J  |                                                  | اد  |          | Ü | 340      | Ü | 330 U    | T        |          | Ū | 350      | Ü            | 350      | U            | 360 L    | υ    |
| Benzo(k)fluoranthene        | 330    | 330      | U  | 340      | U  |                                                  | ح   | 1        | U | 340      | U | 330 U    | 7        |          | Ū |          | Ü            | 350      | U            | 360 L    | ij į |
| Benzo(a)pyrene              | 330    | 330      | C  | 340      | U  |                                                  | Ũ   |          | U | 340      | U | 330 U    | T        | 330      | Ü | 350      | U            | 350      | U            | 360 L    | υ    |
| Indeno(1,2,3-cd)pyrene      | 330    |          | U  |          | U  |                                                  | U   | 1        | U | 340      | U | 330 U    | 1        | 330      | σ | 350      | U            | 350      | U            | 360 L    | ان   |
| Dibenz(a,h)anthracene       | 330    |          | C  |          | Ū  |                                                  | U   |          | U | 340      | U | 330 U    | 1        | 330      | Ū | 350      | U            | 350      | Ū            |          | Ū    |
| Benzo(g,h,i)perylene        | 330    | 330      | U  | 340      | U  | 340                                              | U   | 340      | U | 340      | U | 330 U    | T        | 330      | Ū | 350      | U            | 350      | Ū            |          | ال   |

# 3-14

# **BLANK AND SAMPLE DATA SUMMARY**

| SDG: B07Q63 | REVIEWER: RB        |          |          | DAT      | E: 4/13/9 | 3            |               | PAGE_1_(                                                                           | DF_1_     |
|-------------|---------------------|----------|----------|----------|-----------|--------------|---------------|------------------------------------------------------------------------------------|-----------|
| COMMENTS:   |                     |          |          |          |           |              |               |                                                                                    |           |
| SAMPLE ID   | COMPOUND            | RESULT   | Q        | RT       | UNITS     | 5X<br>RESULT | 10X<br>RESULT | SAMPLES<br>AFFECTED                                                                | QUALIFIER |
| SBLK1223SI  | Di-n-butylphthalate | 92       | J        |          | ug/Kg     | 460          | 920           | B07Q64, B07Q65,<br>B07Q66, B07Q67,<br>B07Q68, B07Q69,<br>B07Q71, B07Q72,<br>B07Q73 | U         |
|             |                     |          |          |          |           |              |               |                                                                                    |           |
|             |                     | ļ        |          | <u> </u> |           |              |               |                                                                                    |           |
|             |                     | 1        |          |          |           |              |               |                                                                                    | ·         |
|             |                     |          | ļ        |          |           |              |               |                                                                                    |           |
| 1           |                     | <u> </u> | ļ        |          |           |              |               |                                                                                    |           |
|             |                     | <u> </u> | <u> </u> |          | ļ         |              |               |                                                                                    |           |
|             |                     | ļ        |          |          |           |              |               |                                                                                    |           |
|             |                     |          |          |          | <u> </u>  |              |               |                                                                                    |           |
|             |                     | ļ        |          |          |           | . <u></u> -  |               |                                                                                    |           |
|             |                     |          |          |          |           |              |               |                                                                                    |           |
|             |                     |          |          |          |           |              |               |                                                                                    |           |
| <del></del> |                     |          |          | ,        |           |              |               |                                                                                    |           |
|             |                     |          |          |          |           |              |               |                                                                                    |           |

# DATA QUALIFICATION SUMMARY

| r                   |              |                                                                              |                            |
|---------------------|--------------|------------------------------------------------------------------------------|----------------------------|
| SDG: B07Q63         | REVIEWER: RB | DATE: 4/13/93                                                                | PAGE_1_OF_1                |
| COMMENTS:           |              |                                                                              |                            |
| COMPOUND            | QUALIFIER    | SAMPLES AFFECTED                                                             | REASON                     |
| Di-n-butylphthalate | U.           | B07Q64, B07Q65, B07Q66,<br>B07Q67, B07Q68, B07Q69,<br>B07Q71, B07Q72, B07Q73 | Lab Blank<br>Contamination |
|                     |              |                                                                              |                            |
| ,                   |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     | -            |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     | ·            |                                                                              |                            |
|                     |              |                                                                              |                            |
|                     |              |                                                                              | ·                          |

3-15

# THIS PAGE INTENTIONALLY LEFT BLANK

| SAMPLE LOCATION INFORMATION | IOM             | TAMAOANI | YND SYWBIE       | MELL            |
|-----------------------------|-----------------|----------|------------------|-----------------|
| <b>PESTICIDES</b>           | ATAG<br>GAJGMAS | XIXTAM   | SAMPLE<br>NUMBER | POCATION SAMPLE |
| 9-1                         | Z6/60/ZT        | S        | BO7Q52           | T50-N-T         |
| 9- <del>1</del>             | 75/06/55        | s        | BO7Q53           |                 |
| S-7                         | 75/60/27        | s        | B07Q54           |                 |
| <b>9−</b> 7                 | 75/09/55        | S        | BO7Q55           |                 |
| <b>9-</b> ₹                 | T5/60/2T        | S        | B07Q56           |                 |
| S-7                         | 75/09/55        | S        | <b>B07</b> Q57   |                 |
| S-7                         | T5/09/55        | S        | B07Q58           |                 |
| 9-7                         | TS/09/92        | s        | 807Q59           |                 |
| 9-7                         | T5/00/55        | s        | B07Q60           |                 |
| S-7                         | TS/09/92        | s        | BO7Q61           |                 |
| 9-7                         | TS/09/92        | s        | B07Q62           |                 |
| 6-7                         | 12/18/92        | s        | B07Q63           |                 |
| 6-7                         | 12/18/92        | S        | B07Q64           |                 |
| 6-1                         | TS/T8/65        | S        | B07Q65           |                 |
| 6-7                         | 72/18/92        | S        | B07Q66           |                 |
| 6-7                         | TS/T8/65        | s        | B07Q67           |                 |
| 6-7                         | 12/18/92        | s        | B07Q68           |                 |
| 6-7                         | 72/78/92        | S        | B07Q69           |                 |
| 6- <b>†</b>                 | 72/18/92        | s        | B07Q70           |                 |
| 6-7                         | 72/78/92        | s        | BOZGZI           |                 |
| 6-Þ                         | 72/18/92        | S        | BO7Q72           | ,               |
| 6-Þ                         | 75/18/92        | S        | BO7Q73           |                 |

# THIS PAGE INTENTIONALLY LEFT BLANK

#### 4.0 PESTICIDE AND PCB DATA VALIDATION

## 4.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

B07Q52

EN.

5

(

\*\*\* . 7

Page.

B07Q63

## 4.2 HOLDING TIMES

Analytical holding times were assessed to ascertain whether the holding time requirements for pesticide/PCB analyses were met by the laboratory. Westinghouse-Hanford procedures require that samples be extracted within seven days of collection and analyzed within 40 days of extraction (WHC 1991a).

Based upon Westinghouse-Hanford data validation procedures, the seven-day extraction holding time was exceeded for several samples. These samples were flagged "J" and are considered to be estimated. However, these samples meet the requirements of USEPA Data Validation Guidelines, which requires a 14-day extraction holding time.

The seven-day holding time was exceeded for the following samples:

- All samples associated with SDG No. B07Q52.
- All samples associated with SDG No. B07Q63.

Holding times for all other samples were met.

#### 4.3 INSTRUMENT PERFORMANCE AND CALIBRATIONS

Instrument performance was assessed to ensure that adequate chromatographic resolution and instrument sensitivity were achieved by the gas chromatographic system.

The specific criteria for acceptable instrument performance are outlined in EPA guidelines (EPA 1988a and 1988b), including the evaluation and qualification procedures that may be performed on the analytical results.

During the quality assurance review, all indicators for acceptable instrument performance were verified. The criteria established by CLP protocols were met and the results are acceptable, except as noted.

Instrument calibration is performed to ensure that the chromatographic system is capable of producing acceptable and reliable analytical data. The initial and continuing calibrations are to be performed according to procedures established by CLP protocols. An initial calibration is performed prior to sample analysis to establish the linear range of the system, including a demonstration that all target compounds can be detected. Continuing calibration checks are performed to verify that instrument performance is stable and reproducible on a day-to-day basis.

## 4.3.1 Initial Calibrations

 $\cdot$ 

The laboratory performed an initial multipoint calibration for the four compounds specified at the concentrations required by CLP protocols. The linearity of the initial calibration is established when the percent RSD or the calibration factors is less than or equal to 10 percent.

The RSDs for the following compounds did not meet QC limits:

Alpha-BHC and delta-BHC in all samples associated with SDG Nos. B07Q52 and B07Q63.

All associated sample results were qualified as estimates and flagged "J".

All other initial calibration results were acceptable.

#### 4.3.2 Calibration Verification

The criteria for acceptable continuing calibrations requires that the calibration factors for all target compounds have a percent difference of less than or equal to 15 percent of the average calibration factor calculated for the associated initial calibration standard. The 15 percent difference value is required for results calculated using the chromatographic column which is used for quantitative purposes. In addition, the percent difference of the calibration factors calculated for the chromatographic column that is used for confirmation must be less than or equal to 20 percent.

All calibration verification results were acceptable.

#### 4.4 BLANKS

Method blank and field blank analyses are performed to determine the extent of laboratory or field contamination of samples. No contaminants should be present in the blanks. Analytical results for analytes present in any sample at less than 5 times the concentration of that analyte found in associated blanks should be qualified as non-detects.

There were no compounds of concern detected in the method or field blanks.

#### 4.5 ACCURACY

•

...

1. 1

Accuracy was assessed by evaluating the recoveries of the surrogate compounds and the matrix spike recoveries calculated for the sample analyses.

## 4.5.1 Matrix Spike Recovery

Matrix spike analyses are performed in duplicate using six compounds specified by CLP protocols. The recoveries for the six compounds must be within the acceptable quality control limits established by CLP protocols.

All matrix spike/matrix spike duplicate results were acceptable.

#### 4.5.2 Surrogate Recovery

The surrogate recovery results for tetrachloro-m-xylene and decachlorobiphenyl in sample number B07Q66 in SDG No. B07Q63 did not meet QC limits. All pesticide/PCB compounds associated with the sample were qualified as estimates and flagged "J".

All other surrogate recovery results were acceptable.

# 4.6 PRECISION

Precision is expressed by the RPD between the recoveries of the matrix spike and the matrix spike duplicate analyses performed on a sample. When the laboratory has not performed duplicate spike analyses, precision may also be assessed by using unspiked duplicate analyses.

The matrix spike/matrix spike duplicate RPDs were acceptable.

# 4.7 COMPOUND IDENTIFICATION AND QUANTITATION

The data were evaluated to confirm the positive concentrations and to investigate the possibility of false negatives in all other data. Confirmation of possible false negatives is addressed by reviewing other factors relating to analytical sensitivity (e.g., detection limits, instrument linearity, analytical recovery). These factors were found to be in control, and the data are acceptable.

All compound identifications and quantitation results are acceptable.

# 4.7.1 Reported Quantitation Limits

0

71/7

Compound quantitations and reported detection limits were recalculated and verified for a minimum of 20 percent of the samples in each case to ensure that they were accurate and are consistent with CLP requirements (EPA 1988a). The reported detection limits must be in accordance with the CRQLs specified in the applicable CLP statement of work.

The compound quantitations and the CRQLs reported were calculated correctly and were acceptable.

## 4.8 OVERALL ASSESSMENT AND SUMMARY

A thorough review of ongoing data acquisition and instrument performance criteria was made to assess overall GC/MS instrument performance. No changes in instrument performance were noted that would result in the degradation of data quality. No indications of unacceptable instrument performance (i.e., shifts in baseline stability, retention time shifts, extraneous peaks, or sensitivity) were found during the quality assurance review.

In general, the pesticide/PCB data presented in this report met the protocol-specified QA/QC requirements. The initial calibration recovery results for several compounds did not meet QC limits. All associated sample results were qualified as estimates and flagged "J". The surrogate recovery results for one sample did not meet QC limits. All associated sample results were qualified as estimates and flagged "J".

The sampling to extraction holding time was exceeded, though not grossly, for all samples in both data packages. As required by Westinghouse-Hanford protocols, all results for these samples were flagged "J" and are considered to be estimates only. All other results are acceptable and usable for all purposes. The data are considered valid and usable within the standard error associated with the method.

| Project: WESTINGHOU | SE-HA | NFORD    |    | 1        |    |          |           |          |    |          |    |            |                |          |    |          |    |          |                                                  |          |               |
|---------------------|-------|----------|----|----------|----|----------|-----------|----------|----|----------|----|------------|----------------|----------|----|----------|----|----------|--------------------------------------------------|----------|---------------|
| Laboratory: TMA     |       |          |    | 1        |    |          |           |          |    |          |    |            |                |          |    |          |    |          |                                                  |          |               |
| Case                | SDG:  | B07Q52   |    | 1        |    |          |           |          |    |          |    |            |                |          |    |          |    |          |                                                  |          |               |
| Sample Number       |       | B07Q52   | !  | B07Q53   |    | B07Q55   |           | B07Q56   |    | B07Q57   | _  | B07Q58     |                | B07Q59   |    | B07Q60   |    | B07Q61   |                                                  | B07Q62   |               |
| Location            |       | 120-N-   | 1  | 120-N-   | 1  | 120-N-   | 1         | 120-N-   |    | 120-N-   | _  | 120-N-1    | í              | 120-N-1  |    | 120-N-   |    | 120-N-   |                                                  | 120-N-   |               |
| Remarks             |       |          |    | DUP      |    | EΒ       |           |          | -  | 1-4 11   |    | 120 17     | ·              | 120 10   |    | 120-14-  | '  | 120-14-  | <u>'                                    </u>     | 120-14-  | •             |
| Sample Date         |       | 12/09/92 | 5  | 12/09/92 | 2  | 12/09/92 | 2         | 12/09/92 | 2  | 12/09/92 |    | 12/09/92   |                | 12/09/92 | ,  | 12/09/92 | ,  | 12/09/92 | <del>,                                    </del> | 12/09/92 | 2             |
| Extraction Date     |       | 12/22/92 | ?  | 12/22/92 | 2  | 12/22/92 | 2         | 12/24/92 |    | 12/22/92 |    | 12/22/92   |                | 12/24/92 |    | 12/22/92 |    | 12/22/92 |                                                  | 12/22/92 |               |
| Analysis Date       |       | 01/06/93 | 3  | 01/06/93 | 3  | 01/06/93 | 3         | 01/06/93 | •  | 01/06/93 |    | 01/06/93   |                | 01/06/93 |    | 01/06/93 |    | 01/06/93 |                                                  | 01/06/93 |               |
| Pesticide/PCB       | CRQL  | Result   | Q  | Result   | Q  | Result   | Q         | Result   | Q  | Result   | Q  |            |                |          | Q  | Result   | Q  |          | Q                                                |          | ĪQ            |
| alpha-BHC           | 1.7   | 1.9      | w  | 1.8      | W  | 1.7      | IJ        |          | UJ |          | IJ |            | <del>u</del> j |          | Ü  | 1.8      | w  |          | <del>u</del>                                     | 1.7      | Ü             |
| beta-BHC            | 1.7   | 1.9      | W  | 1.8      | W  | 1.7      | UJ        | 1.8      | UJ | 1.8      | ÜJ | 1.8        | IJ             |          | Ü  | 1.8      | w  | <u> </u> | Ü                                                | 1.7      | Ü             |
| delta-BHC           | 1.7   | 1.9      | UJ | 1.8      | W  |          | IJ        | 1.8      | UJ |          | ŪĴ |            | ŪJ             |          | Ü  | 1.8      | UJ | 1.7      | w                                                | 1.7      | Ü             |
| gamma-BHC (Lindane) | 1.7   | 1.9      | w  | 1.8      | W  | 1.7      | IJ        | 1.8      | UJ | 1.8      | ŪĴ |            | ŪĴ             |          | IJ | 1.8      | UJ | 1.7      | UJ                                               | 1.7      | Ü             |
| Heptachlor          | 1.7   | 1.9      | W  | 1.8      | W  | 1.7      | UJ        | 1.8      | w  |          | IJ |            | IJ             |          | IJ | 1.8      | w  | 1.7      | UJ                                               | 1.7      | UJ            |
| Aldrin              | 1.7   | 1.9      | IJ | 1.8      | UJ | 1.7      | W         | 1.8      | UJ | 1.8      | IJ |            | IJ             |          | ÜĴ | 1.8      | w  |          | UJ                                               | 1.7      | سَّا          |
| Heptachlor epoxide  | 1.7   | 1.9      | UJ | 1.8      | UJ | 1.7      | IJ        | 1.8      | UJ | 1.8      | J  |            | IJ             |          | Ü  | 1.8      | UJ |          | υĴ                                               |          | Ü             |
| Endosulfan I        | 1.7   | 1.9      | IJ | 1.8      | ÜJ | 1.7      | IJ        | 1.8      | w  | 1.8      | IJ | 1.8        | IJ             |          | Ü  | 1.8      | w  |          | w                                                | 1.7      | Ü             |
| Dieldrin            | 3.3   | 3.6      | 2  | 3.6      | W  | 3.2      | UJ        | 3.5      | W  | 3.6      | IJ |            | UJ             |          | W  | . 3.4    | Ü  | 3.4      | Ü                                                | 3.4      | W             |
| 4,4'-DDE            | 3.3   |          | IJ | 3.6      | UJ | 3.2      | IJ        | 3.5      | W  | 3.6      | IJ |            | UJ             |          | ŲJ | 3.4      | W  | 3.4      | Ü                                                |          | ΙΨ            |
| Endrin              | 3.3   |          | IJ | 3.6      | W  | 3.2      | w         | 3.5      | IJ | 3.6      | IJ | 3.6        | IJ             | 3.5      | IJ | 3.4      | W  | 3.4      | 3                                                |          | UJ            |
| Endosulfan II       | 3.3   |          | W  | 3.6      | IJ |          | IJ        | 3.5      | UJ | 3.6      | IJ | 3.6        | IJ             | 3.5      | IJ | 3.4      | 3  | 3.4      | 3                                                | 3.4      | Ü             |
| 4,4'-DDD            | 3.3   |          | IJ | 3.6      | 3  | 3.2      | IJ        | 3.5      | IJ | 3.6      | IJ | 3.6        | IJ             |          | W  | 3.4      | IJ | 3.4      | IJ                                               | 3.4      | <del>UJ</del> |
| Endosulfan sulfate  | 3.3   |          | IJ | 3.6      | 3  |          | IJ        | 3.5      | IJ | 3.6      | IJ | 3.6        | IJ             | 3.5      | UJ | 3.4      | IJ | 3.4      | IJ                                               | 3.4      | UJ            |
| 4,4'-DDT            | 3.3   |          | IJ | 3.6      | 3  | 3.2      | 3         | 3.5      |    | 3.6      | IJ | 3.6        | w              |          | W  |          | IJ | 3.4      | Ü                                                | 3.4      | Ū             |
| Methoxychlor        | 17.0  | 19       | ٤  | 18       | 3  | 17       | IJ        | 18       | IJ | 18       | UJ | 18         | IJ             | 18       | W  | 18       | Ü  | 17       | IJ                                               |          | w             |
| Endrin Ketone       | 3.3   | 3.6      | S  |          | 3  | 3.2      | 5         |          | 2  | 3.6      | ŪJ | 3.6        | W              | 3.5      | IJ |          | 3  |          | ÜJ                                               | 3.4      | Ū,            |
| Endrin Aldehyde     | 3.3   |          | IJ | 3.6      | 3  | 3.2      | 2         | 3.5      | ü  | 3.6      | UJ | 3.6        | IJ             | 3.5      | UJ |          | S  | 3.4      | ÜJ                                               | 3.4      | IJ            |
| alpha-Chlordane     | 1.7   |          | IJ | 1.8      | 3  |          | 2         | 1.8      | W  | 1.8      | IJ | 1.8        | W              | 1.8      | W  | 1.8      | Ü  | 1.7      | UJ                                               |          | w             |
| gamma-Chlordane     | 1.7   |          | ÜJ |          | IJ |          | S         | 1.8      | IJ | 1.8      | W  | 1.8        | W              | 1.8      | IJ | 1.8      | W  | 1.7      | W                                                |          | W             |
| Toxaphene           | 170.0 |          | W  | 180      | IJ |          | 3         | 180      | ÜJ | 180      | W  | 180        | w              | 180      | IJ | 180      | IJ | 170      | IJ                                               |          | w             |
| Arochlor-1016       | 33.0  |          | IJ |          | 2  | 32       | ឌ         | 35       | IJ | 36       | w  | 36         | ÜJ             | 35       | w  | 34       | W  |          | UJ                                               |          | ŪĴ            |
| Arochlor-1221       | 33.0  |          | UJ |          | ٤  |          | W         | 71       | IJ | 72       | ÜĴ | 7 <b>2</b> | UJ             | 71       | UJ | 70       | W  |          | UJ                                               |          | w             |
| Arochlor-1232       | 67.0  |          | W  |          | IJ | 32       |           | 35       | IJ | 36       | IJ | 36         | IJ             |          | IJ |          | ŪĴ |          | Ū                                                |          | w             |
| Arochlor-1242       | 33.0  | 36       | UJ |          | W  | 32       |           |          | W  | 36       | UJ | 36         | UJ             |          | ŪJ | 34       | w  |          | Ü                                                |          | W             |
| Arochior-1248       | 33.0  |          | W  |          | IJ |          | <u>UJ</u> | 35       | ÜJ | 36       | w  |            | IJ             |          | Ū  |          | W  |          | ü                                                |          | Ü             |
| Arochlor-1254       | 33.0  |          | UJ | 36       | IJ | 32       | IJ        | 35       | IJ |          | UJ |            | W              |          | υj |          | w  |          | Ü                                                |          | liil          |
| Arochlor-1260       | 33.0  | 36       | UJ | 36       | W  | 32       | W         | 35       | IJ |          | UJ |            | IJ             |          | ŪJ |          | w  |          | ᇤ                                                |          | UJ            |

# HOLDING TIME SUMMARY

| SDG:B07Q52   | REVIEWER:        | RB              |                  | DATE: 04/17/     | 93                             | PAGE_1                            | _OF_1_    |
|--------------|------------------|-----------------|------------------|------------------|--------------------------------|-----------------------------------|-----------|
| COMMENTS:    |                  |                 |                  |                  |                                |                                   |           |
| FIELD SAMPLE | ANALYSIS<br>TYPE | DATE<br>SAMPLED | DATE<br>PREPARED | DATE<br>ANALYZED | PREP.<br>HOLDING<br>TIME, DAYS | ANALYSIS<br>HOLDING<br>TIME, DAYS | QUALIFIER |
| B07Q52       | Pest/PCB         | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q53       | Pest/PCB         | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q55       | Pest/PCB         | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q56       | Pest/PCB         | 12/09/92        | 12/24/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q57       | Pest/PCB         | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q58       | Pest/PCB         | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q59       | Pest/PCB         | 12/09/92        | 12/24/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q60       | Pest/PCB         | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q61       | Pest/PCB         | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | 1         |
| B07Q62       | Pest/PCB         | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
|              |                  |                 |                  |                  |                                |                                   |           |
|              |                  |                 |                  |                  |                                |                                   |           |
|              |                  |                 |                  |                  |                                |                                   |           |
|              |                  |                 |                  |                  |                                |                                   |           |
|              |                  |                 |                  |                  |                                |                                   |           |
|              |                  |                 |                  | ,                |                                |                                   |           |

| Project: WESTINGHOU | ISE-HA | NFORD    |    | ]        |    |          |    |          |          |          |          |          |     |          |          |          |          |          |    |          |                                              |
|---------------------|--------|----------|----|----------|----|----------|----|----------|----------|----------|----------|----------|-----|----------|----------|----------|----------|----------|----|----------|----------------------------------------------|
| Laboratory: TMA     |        |          |    | 1        |    |          |    |          |          |          |          |          |     |          |          |          |          |          |    |          |                                              |
| Case                | SDG:   | B07Q52   |    | 1        |    |          |    |          |          |          |          |          |     |          |          |          |          |          |    |          |                                              |
| Sample Number       |        | B07Q52   |    | B07Q53   |    | B07Q55   |    | B07Q56   |          | B07Q57   | ,        | B07Q58   |     | B07Q59   |          | B07Q60   |          | B07Q61   |    | B07Q62   | ,                                            |
| Location            |        | 120-N-   | 1  | 120-N-   | 1  | 120-N-1  |    | 120-N-   | ī        | 120-N-   |          | 120-N-   | 1   | 120-N-1  |          | 120-N-   |          | 120-N-   | 1  | 120-N-   |                                              |
| Remarks             |        |          |    | DUP      |    | EB       |    |          |          |          |          |          |     |          |          | 1        |          |          | •  | 120 10   | •                                            |
| Sample Date         |        | 12/09/92 | ?  | 12/09/92 | 2  | 12/09/92 | !  | 12/09/92 | 2        | 12/09/92 | <u> </u> | 12/09/92 | •   | 12/09/92 | •        | 12/09/92 | <u> </u> | 12/09/92 |    | 12/09/92 | <u>,                                    </u> |
| Extraction Date     |        | 12/22/92 | 2  | 12/22/92 | 2  | 12/22/92 | 2  | 12/24/92 | <u> </u> | 12/22/92 | ?        | 12/22/92 | ?   | 12/24/92 |          | 12/22/92 |          | 12/22/92 |    | 12/22/92 |                                              |
| Analysis Date       |        | 01/06/93 | )  | 01/06/93 |    | 01/06/93 | ,  | 01/06/93 | }        | 01/06/93 | 3        | 01/06/93 | 3   | 01/06/93 | <u> </u> | 01/06/93 |          | 01/06/93 |    | 01/06/93 |                                              |
| Pesticide/PCB       | CRQL   |          | Q  |          | Q  |          | Q  | Result   | Q        | Result   | Q        | Result   | Q   |          |          | <u> </u> | Q        |          | Q  |          | Q                                            |
| alpha-BHC           | 1.7    |          | IJ | 1.8      | IJ | 1.7      | IJ | 1.8      | W        | 1.8      | UJ       | 1.8      | IJ  |          | Ü        |          | W        | 1.7      | w  |          | w                                            |
| beta-BHC            | 1.7    | 1.9      | W  | 1.8      | W  | 1.7      | W  | 1.8      | IJ       | 1.8      | UJ       | 1.8      | UJ  | 1.8      | w        | 1.8      | IJ       | 1.7      | w  |          | Ü                                            |
| delta-BHC           | 1.7    |          | IJ | 1.8      | IJ |          | IJ | 1.8      | IJ       | 1.8      | UJ       | 1.8      | w   | 1.8      | UJ.      |          | IJ       | 1.7      | W  |          | IJ                                           |
| gamma-BHC (Lindane) | 1.7    | 1.9      | W  | 1.8      | IJ |          | 3  |          | IJ       | 1.8      | IJ       | 1.8      | w   | 1.8      | IJ       |          | IJ       | 1.7      | w  |          | ŪĴ                                           |
| Heptachlor          | 1.7    | 1.9      | IJ | 1.8      | IJ |          | IJ |          | IJ       |          | IJ       | 1.8      | W   | 1.8      | IJ       | 1.8      | IJ       | 1.7      | IJ |          | UJ                                           |
| Aldrin              | 1.7    | 1.9      | W  | 1.8      | 3  |          | 3  | 1.8      | IJ       | 1.8      | W        | 1.8      | w   | 1.8      | IJ       | 1.8      | IJ       | 1.7      | UJ |          | ÜĴ                                           |
| Heptachlor epoxide  | 1.7    | 1.9      | IJ | 1.8      | IJ | 1.7      | 3  |          | W        | 1.8      | IJ       | 1.8      | w   | 1.8      | UJ       | 1.8      | IJ       | 1.7      | UJ |          | w                                            |
| Endosulfan I        | 1.7    | 1.9      | IJ | 1.8      | IJ | 1.7      | 3  | 1.8      | IJ       | 1.8      | UJ       | 1.8      | IJ  | 1.8      | IJ       | 1.8      | IJ       | 1.7      | IJ |          | υJ                                           |
| Dieldrin            | 3.3    | 3.6      | S) | 3.6      | 3  | 3.2      | 3  | 3.5      | IJ       | 3.6      | UJ       | 3.6      | w   | 3.5      | w        | 3.4      | 3        | 3.4      | w  |          | IJ                                           |
| 4,4'-DDE            | 3.3    | 3.6      | 3  | 3.6      | 3  | 3.2      | S  | 3.5      | IJ       | 3.6      | บม       | 3.6      | 3   | 3.5      | ŲĴ       | 3.4      | IJ       | 3.4      | IJ |          | UJ                                           |
| Endrin              | 3.3    | 3.6      | 3  |          | IJ | 3.2      | 3  | 3.5      | IJ       | 3.6      | UJ       | 3.6      | IJ  | 3.5      | UJ       | 3.4      | IJ       | 3.4      | IJ | 3.4      | IJ                                           |
| Endosulfan II       | 3.3    | 3.6      | 3  |          | IJ | 3.2      | W  | 3.5      | 3        | 3.6      | 2        | 3.6      | IJ  | 3.5      | IJ       | 3.4      | IJ       | 3.4      | IJ |          | IJ                                           |
| 4,4'-DOD            | 3.3    |          | 3  | 3.6      | 3  |          | W  | 3.5      | 3        |          | IJ       | 3.6      | เกา | 3.5      | IJ       | 3.4      | w        | 3.4      | w  | 3.4      | IJ                                           |
| Endosulfan sulfate  | 3.3    | 3.6      | 3  | 3.6      | IJ |          | W  |          | IJ       | 3.6      | 2        |          | IJ  |          | C        | 3.4      | IJ       | 3.4      | 3  | 3.4      | Ü                                            |
| 4,4'-DDT            | 3.3    | 3.6      | 5  | 3.6      | IJ |          | W  |          | 3        | 3.6      |          |          | IJ  | 3.5      | C        | 3.4      | IJ       | 3.4      | IJ | 3.4      | IJ                                           |
| Methoxychlor        | 17.0   | 19       | 3  | 18       | IJ |          | IJ |          | 3        |          | IJ       |          | IJ  | 18       | W        | 18       | W        | 17       | w  | 17       | IJ                                           |
| Endrin Ketone       | 3.3    | 3.6      | 3  | 3.6      | IJ |          | IJ |          | 3        |          | IJ       | 3.6      | IJ  | 3.5      | IJ       | 3.4      | w        | 3.4      | IJ | 3.4      | IJ                                           |
| Endrin Aldehyde     | 3.3    | 3.6      | 3  | 3.6      | IJ | 3.2      | S  | 3.5      | 3        | 3.6      |          | 3.6      | 3   | 3.5      | IJ       | 3.4      | Ü        | 3.4      | UJ |          | W                                            |
| alpha-Chlordane     | 1.7    | 1.9      | ٤  | 1.8      | IJ |          | 2  | 1.8      | 3        |          | ٤        |          | S   | 1.8      | Ü        | 1.8      | W        | 1.7      | UJ | 1.7      | UJ                                           |
| gamma-Chiordane     | 1.7    |          | 2  |          | 2  | 1.7      | S  | 1.8      | 3        | 1.8      | IJ       | 1.8      | UJ  | 1.8      | S        | 1.8      | W        | 1.7      | W  | 1.7      | IJ                                           |
| Toxaphene           | 170.0  | 190      | W  |          | ٤  |          | IJ |          | 3        |          | ÜJ       | 180      | ÚJ  | 180      | Ü        | 180      | IJ       | 170      | W  | 170      | w                                            |
| Arochlor-1016       | 33.0   | 1        | IJ |          | IJ |          | IJ |          | ٤        |          | IJ       |          | W   | 35       | ٤        | 34       | UJ       | 34       | UJ | 34       | w                                            |
| Arochlor-1221       | 33.0   |          | W  |          | ٤  |          | IJ |          | 2        |          | IJ       | 72       | W   | 71       | S        | 70       | W        | 68       | UĴ | 68       | w                                            |
| Arochlor-1232       | 67.0   |          | W  |          | C  | 32       |    |          | 2        |          | IJ       |          | 띠   |          | W        | 34       | W        | 34       | W  | 34       | w                                            |
| Arochlor-1242       | 33.0   |          | W  |          | W  |          | W  |          | W        |          | ÜJ       |          | W   | 35       | W        | 34       | W        | 34       | W  |          | w                                            |
| Arochlor-1248       | 33.0   |          | W  |          | IJ | 32       |    |          | W        | 36       | IJ       | 36       | IJ  | 35       | ÜĴ       | 34       | 屻        | 34       | UJ |          | ս                                            |
| Arochlor-1254       | 33.0   |          | M  |          | UJ | 32       |    | 35       | IJ       | 36       | W        | 36       | ŪJ  | 35       | W        | 34       | ᄦ        | 34       | W  | 34       | UJ                                           |
| Arochlor-1260       | 33.0   | 36       | w  | 36       | W  | 32       | w] | 35       | w        | 36       | เก       | 36       | w   | 35       | Ū        | 34       | w        | 34       | IJ | 34       | IJ                                           |

# **HOLDING TIME SUMMARY**

| SDG:B07Q52         | REVIEWER:                             | RB              |                  | DATE: 04/17/     | 93                             | PAGE_                             | _OF_1_    |
|--------------------|---------------------------------------|-----------------|------------------|------------------|--------------------------------|-----------------------------------|-----------|
| COMMENTS:          |                                       |                 |                  | •                |                                |                                   |           |
| FIELD SAMPLE<br>ID | ANALYSIS<br>TYPE                      | DATE<br>SAMPLED | DATE<br>PREPARED | DATE<br>ANALYZED | PREP.<br>HOLDING<br>TIME, DAYS | ANALYSIS<br>HOLDING<br>TIME, DAYS | QUALIFIER |
| B07Q52             | Pest/PCB                              | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J .       |
| B07Q53             | Pest/PCB                              | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q55             | Pest/PCB                              | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q56             | Pest/PCB                              | 12/09/92        | 12/24/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q57             | Pest/PCB                              | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q58             | Pest/PCB                              | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q59             | Pest/PCB                              | 12/09/92        | 12/24/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q60             | Pest/PCB                              | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q61             | Pest/PCB                              | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
| B07Q62             | Pest/PCB                              | 12/09/92        | 12/22/92         | 01/06/93         | 7                              | 40                                | J         |
|                    | -                                     |                 |                  |                  |                                |                                   |           |
|                    |                                       |                 |                  |                  |                                |                                   |           |
|                    |                                       |                 |                  |                  |                                |                                   |           |
|                    |                                       |                 | ļ                |                  |                                |                                   |           |
|                    | · · · · · · · · · · · · · · · · · · · |                 |                  |                  |                                |                                   |           |

# **CALIBRATION DATA SUMMARY**

| SDG: B07Q52  | REVIEWER: R | В                                     | DATE: 0                               | 4/19/93     | PAGE                | _1_OF_1_  |
|--------------|-------------|---------------------------------------|---------------------------------------|-------------|---------------------|-----------|
| COMMENTS:    |             |                                       | · · · · · · · · · · · · · · · · · · · |             |                     |           |
| CALIB. TYPE: | INITIAL     | CONTINUING                            | INSTRUM                               | ENT: H5890A |                     |           |
| CALIB. DATE  | COMPOUND    |                                       | RF                                    | RSD/%D/%R   | SAMPLES<br>AFFECTED | QUALIFIER |
| 01/05/93     | alpha-BHC   |                                       |                                       | 19.7        | All                 | 1         |
| 01/05/93     | delta-BHC   |                                       |                                       | 18.3        | All                 | J         |
|              |             |                                       |                                       |             |                     |           |
|              |             |                                       |                                       |             |                     |           |
|              |             |                                       |                                       |             |                     |           |
|              |             |                                       |                                       |             |                     | . 48      |
|              |             |                                       |                                       |             |                     | - 11      |
|              |             |                                       |                                       |             |                     |           |
|              |             |                                       |                                       | `           |                     | r.        |
|              |             |                                       |                                       |             |                     |           |
|              |             |                                       |                                       |             |                     |           |
|              |             |                                       |                                       |             |                     |           |
|              |             |                                       |                                       |             |                     |           |
|              |             | · · · · · · · · · · · · · · · · · · · |                                       |             |                     |           |
|              |             |                                       |                                       |             |                     |           |
|              |             |                                       |                                       |             |                     |           |

# DATA QUALIFICATION SUMMARY

| SDG: B07Q52                 | REVIEWER: RB | DATE: 04/19/93      | PAGE_1_OF_1_           |
|-----------------------------|--------------|---------------------|------------------------|
| COMMENTS:                   | ALL ALL      | 1 2.112. 04/15/53   | I NOD_I_OF_I           |
| COMPOUND                    | QUALIFIER    | SAMPLES<br>AFFECTED | REASON                 |
| All pesticide/PCB compounds | J            | All                 | Holding times exceeded |
| alpha-BHC                   | J            | All                 | Initial calibration    |
| delta-BHC                   | 1            | All .               | Initial calibration    |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |
|                             |              |                     |                        |

| Project: WESTINGHOU | SE-HA | NFORD    |    | 1        |          |                                                  |     | ,        |    |          |    |          |          |          |    |          |                                                  |          |     |          |            |
|---------------------|-------|----------|----|----------|----------|--------------------------------------------------|-----|----------|----|----------|----|----------|----------|----------|----|----------|--------------------------------------------------|----------|-----|----------|------------|
| Laboratory: TMA     |       |          |    | 1        |          |                                                  |     |          |    |          |    |          |          |          |    |          |                                                  |          |     |          |            |
| Case                | SDG:  | B07Q63   |    | 1        |          |                                                  |     |          |    |          |    |          |          |          |    |          |                                                  |          |     |          |            |
| Sample Number       |       | B07Q63   |    | B07Q64   |          | B07Q65                                           |     | B07Q66   |    | B07Q67   |    | B07Q68   |          | B07Q69   |    | B07Q71   |                                                  | B07Q72   |     | B07Q73   |            |
| Location            |       | 120-N-   | 1  | 120-N-   | 1        | 120-N-                                           | i   | 120-N-   | 1  | 120-N-   | 1  | 120-N-1  | 1        | 120-N-1  | l  | 120-N-1  | <u> </u>                                         | 120-N-   |     | 120-N-   |            |
| Remarks             | -     | EB       |    |          |          | <del>                                     </del> |     |          |    | 1        |    |          |          |          |    | -        |                                                  | DUP      |     | 1.20.10  | ∸⊣         |
| Sample Date         |       | 12/18/92 | 2  | 12/18/92 | 2        | 12/18/92                                         | ?   | 12/18/92 | 2  | 12/18/92 |    | 12/18/92 | <u> </u> | 12/18/92 |    | 12/18/92 | <del>,                                    </del> | 12/18/92 |     | 12/18/92 | <b>,</b> ⊢ |
| Extraction Date     |       | 12/02/92 | 2  | 12/29/92 | ?        | 12/29/92                                         | !   | 12/29/92 | 2  | 12/29/92 | 2  | 12/29/92 |          | 12/29/92 |    | 12/29/92 |                                                  | 12/29/92 |     | 12/29/92 |            |
| Analysis Date       |       | 01/07/93 | 3  | 01/07/93 | }        | 01/07/93                                         | )   | 01/07/93 | 3  | 01/07/93 | )  | 01/07/93 |          | 01/07/93 |    | 01/07/93 |                                                  | 01/07/93 |     | 01/07/93 |            |
| Pesticide/PCB       | CROL  |          | Q  | Result   | Q        | Result                                           | Q   | Result   | Q  | Result   | Q  | Result   | Q        |          | Q  |          | Q                                                |          | Q   |          | īa         |
| alpha-BHC           | 1.7   | 1.7      | UJ | 1.7      | ŪJ       | 1.8                                              | UJ  | 1.7      | UJ | 1.8      | W  | 1.7      | IJ       | 1.7      | IJ |          | U.                                               | 1.8      | w   | 1.9      |            |
| beta-BHC            | 1.7   | 1.7      | W  | 1.7      | W        | 1.8                                              | w   | 1.7      | UJ | 1.8      | IJ | 1.7      | IJ       | 1.7      | IJ |          | IJ                                               | 1.8      | ŪĴ  | 1.9      |            |
| delta-BHC           | 1.7   | 1.7      | IJ | 1.7      | W        | 1.8                                              | w   | 1.7      | IJ | 1.8      | UJ | 1.7      | IJ       | 1.7      | IJ |          | UJ                                               | 1.8      | UJ  | 1.9      |            |
| gamma-BHC (Lindane) | 1.7   | 1.7      | W  | 1.7      | W        | 1.8                                              | IJ  | 1.7      | UJ | 1.8      | UJ | 1.7      | ÜĴ       | 1.7      | UJ |          | IJ                                               | 1.8      | UJ  | 1.9      | UJ         |
| Heptachlor          | 1.7   | 1.7      | UJ | 1.7      | IJ       | 1.8                                              | IJ  | 1.7      | W  | 1.8      | ນ  | 1.7      | υJ       | 1.7      | IJ | 1.8      | w                                                | 1.8      | UJ  | 1.9      |            |
| Aldrin              | 1.7   | 1.7      | IJ | 1.7      | W        | 1.8                                              | ÜĴ  | 1.7      | UJ | 1.8      | IJ | 1.7      | IJ       | 1.7      | IJ | 1.8      | w                                                | 1.8      | IJ  | 1.9      |            |
| Heptachlor epoxide  | 1.7   | 1.7      | IJ | 1.7      | IJ       | 1.8                                              | IJ  | 1.7      | UJ | 1.8      | 3  | 1.7      | UJ.      | 1.7      | IJ | 1.8      | UJ                                               | 1.8      | IJ  | 1.9      | IJ         |
| Endosulfan I        | 1.7   | 1.7      | IJ | 1.7      | IJ       | 1.8                                              | IJ  | 1.7      | IJ | 1.8      | IJ | 1.7      | IJ       | 1.7      | W  | 1.8      | IJ                                               | 1.8      | IJ  | 1.9      | W          |
| Dieldrin            | 3.3   | 3.3      | IJ | 3.3      | IJ       | 3.4                                              | IJ  | 3.3      | UJ | 3.4      | IJ | 3.3      | IJ       | 3.4      | w  | 3.4      | ÜJ                                               | 3.4      | IJ  | 3.7      | W          |
| 4,4'-DDE            | 3.3   |          | UJ | 3.3      | 3        | 3.4                                              | IJ  | 3.3      | UJ | 3.4      | Ü  | 3.3      | ü        | 3.4      | W  | 3.4      | IJ                                               | 3.4      | UJ. | 3.7      | w          |
| Endrin              | 3.3   | 3.3      | UJ | 3.3      | 3        | 3.4                                              | 3   | 3.3      | W  | 3.4      | 2  | 3.3      | IJ       | 3.4      | w  | 3.4      | W                                                | 3.4      | UJ  | 3.7      | w          |
| Endosulfan li       | 3.3   | 3.3      | UJ | 3.3      | 3        | 3.4                                              | 3   | 3.3      | W  | 3.4      | 2  | 3.3      | IJ       | 3.4      | IJ | 3.4      | IJ                                               | 3.4      | w   | 3.7      | IJ         |
| 4,4'-DDD            | 3.3   | 3.3      | UJ | 3.3      | 3        | 3.4                                              | 3   |          | W  | 3.4      | ໜ  | 3.3      | IJ       | 3.4      | IJ | 3.4      | IJ                                               | 3.4      | w   | 3.7      | UJ         |
| Endosulfan sulfate  | 3.3   | 3.3      | IJ | 3.3      | 3        | 3.4                                              | 3   |          | UJ | 3.4      | IJ | 3.3      | IJ       | 3.4      | W  | 3.4      | IJ                                               | 3.4      | IJ  | 3.7      | UJ         |
| 4,4'-DDT            | 3.3   | 3.3      | IJ | 3.3      | 3        |                                                  | 3   | 3.3      |    |          | UJ | 3.3      | IJ       | 3.4      | W  | 3.4      | 3                                                | 3.4      | UJ  | 3.7      | w          |
| Methoxychlor        | 17.0  | 17       | 3  | 17       | W        |                                                  | 3   | 17       | UJ | 18       | W  |          | IJ       | 17       | W  | 18       | J                                                | 18       | ÜJ  | 19       | UJ         |
| Endrin Ketone       | 3.3   | 3.3      | 3  | 3.3      | 3        |                                                  | 3   |          | W  |          | W  |          | 3        | 3.4      | IJ | 3.4      | UJ                                               | 3.4      | UJ  | 3.7      | IJ         |
| Endrin Aldehyde     | 3.3   | 3.3      | 3  | 3.3      | 3        | 3.4                                              | 3   |          | IJ |          | 3  | 3.3      | IJ       | 3.4      | IJ | 3.4      | IJ                                               | 3.4      | ÜJ  | 3.7      | UJ         |
| alpha-Chlordane     | 1.7   |          | 3  | 1.7      | IJ       | 1.8                                              | W   |          | 3  |          | 5  | 1.7      | 3        |          | ٤  | 1.8      | IJ                                               | 1.8      | IJ  | 1.9      | IJ         |
| gamma-Chlordane     | 1.7   |          | IJ |          | S        | 1.8                                              | IJ  |          | 3  |          | C  |          | 3        | 1.7      | ٤  |          | 3                                                | 1.8      | IJ  | 1.9      | W          |
| Toxaphene           | 170.0 |          | IJ |          | 3        | 180                                              | S   |          | 3  |          | IJ |          | IJ       | 170      | ٤  |          | 3                                                | 180      | IJ  | 190      | W          |
| Arochlor-1016       | 33.0  |          | 3  |          | IJ       |                                                  | ٤   |          | 3  | _        | IJ |          | W        |          | S  |          | IJ                                               | 34.0     | IJ  | 37.0     | W          |
| Arochlor-1221       | 33.0  |          | 3  |          | ٤        |                                                  | UJ  | 68.0     | 3  |          | ٤  | 67.0     | ٤        | 69.0     | Ü  | 70.0     | w                                                | 69.0     | IJ  | 75.0     | UJ         |
| Arochlor-1232       | 67.0  |          | 2  |          | <u> </u> |                                                  | 2   |          | 3  |          | W  |          | 3        | 3.4      | ٤  | 34.0     | W                                                | 34.0     | 3   | 37.0     | W          |
| Arochlor-1242       | 33.0  |          | S  |          | 2        |                                                  | S   |          | 3  |          | IJ |          | IJ       | 3.4      | W  |          | IJ                                               | 34.0     | 3   | 37.0     | ÜĴ         |
| Arochlor-1248       | 33.0  |          | IJ |          | IJ       |                                                  | S   |          | IJ |          | W  |          | W        | 3.4      | W  |          | IJ                                               | 34.0     | UJ  | 37.0     | UJ         |
| Arochlor-1254       | 33.0  |          | IJ |          | E        |                                                  | IJ  |          | IJ | 34.0     | IJ |          | W        | 3.4      | IJ | 34.0     | W                                                | 34.0     | IJ  | 37.0     | W          |
| Arochlor-1260       | 33.0  | 33.0     | IJ | 33.0     | Ŵ        | 34.0                                             | เกา | 33.0     | IJ | 34.0     | IJ | 33.0     | IJ       | 3.4      | w  | 34.0     | W                                                | 34.0     | UJ  | 37.0     | IJ         |

#### **HOLDING TIME SUMMARY**

| SDG:B07Q63   | REVIEWER:        | RB              |                  | DATE: 4/13/9     | 93                             | PAGE_1                            | _OF_ <u>1</u> _ |  |  |
|--------------|------------------|-----------------|------------------|------------------|--------------------------------|-----------------------------------|-----------------|--|--|
| COMMENTS:    |                  |                 |                  |                  |                                |                                   |                 |  |  |
| FIELD SAMPLE | ANALYSIS<br>TYPE | DATE<br>SAMPLED | DATE<br>PREPARED | DATE<br>ANALYZED | PREP.<br>HOLDING<br>TIME, DAYS | ANALYSIS<br>HOLDING<br>TIME, DAYS | QUALIFIER       |  |  |
| B07Q63       | Pest/PCB         | 12/18/92        | 12/29/92         | 1/7/93           | 7                              | 40                                | J               |  |  |
| B07Q64       | Pest/PCB         | 12/18/92        | 12/29/92         | 1/7/93           | 7                              | 40                                | J               |  |  |
| B07Q65       | Pest/PCB         | 12/18/92        | 12/29/92         | 1/7/93           | 7                              | 40                                | J               |  |  |
| B07Q66       | Pest/PCB         | 12/18/92        | 12/29/92         | 1/7/93           | 7                              | 40                                | J               |  |  |
| B07Q67       | Pest/PCB         | 12/18/92        | 12/29/92         | 1/7/93           | 7                              | 40                                | J               |  |  |
| B07Q68       | Pest/PCB         | 12/18/92        | 12/29/92         | 1/7/93           | 7                              | 40                                | J               |  |  |
| B07Q69       | Pest/PCB         | 12/18/92        | 12/29/92         | 1/7/93           | 7                              | 40                                | 1               |  |  |
| B07Q71       | Pest/PCB         | 12/18/92        | 12/29/92         | 1/7/93           | 7                              | 40                                | 1               |  |  |
| B07Q72       | Pest/PCB         | 12/18/92        | 12/29/92         | 1/7/93           | 7                              | 40                                | J               |  |  |
| B07Q73       | Pest/PCB         | 12/18/92        | 12/29/92         | 1/7/93           | 7                              | 40                                | 1               |  |  |
|              | <u> </u>         | <u>'</u>        |                  |                  |                                |                                   |                 |  |  |
|              |                  |                 |                  |                  |                                |                                   |                 |  |  |
|              | <del></del>      |                 |                  |                  |                                |                                   |                 |  |  |
|              | <u></u>          | <del></del>     |                  |                  |                                |                                   |                 |  |  |

WHC-SD-EN-TI-157, Rev.

| SAMPLES<br>AFFECTED | QUALIFIER |
|---------------------|-----------|
| All                 | J         |
| All                 | J         |
|                     | •         |
|                     |           |
|                     |           |
|                     | *         |
|                     |           |
|                     | 4         |
|                     | •         |
|                     | *         |

PAGE\_1\_OF\_1\_

SDG: B07Q63

**COMMENTS:** 

CALIB. TYPE:

CALIB. DATE

1/5/93

1/5/93

REVIEWER: RB

INITIAL

COMPOUND

alpha-BHC

delta-BHC

**CONTINUING** 

**CALIBRATION DATA SUMMARY** 

RF

DATE: 4/13/93

**INSTRUMENT:** 

RSD/%D/%R

19.7

18.3

| ACCURACI | DATA | SUMMAKI |
|----------|------|---------|
|          |      |         |

| SDG: B07Q63 | REVIEWER: RB         | DATE:4/13/93 | PAG                   | E_1_OF_1_             |  |  |  |  |
|-------------|----------------------|--------------|-----------------------|-----------------------|--|--|--|--|
| COMMENTS:   |                      |              |                       |                       |  |  |  |  |
| SAMPLE ID   | COMPOUND             | % RECOVERY   | SAMPLE(S)<br>AFFECTED | QUALIFIER<br>REQUIRED |  |  |  |  |
| B07Q66      | Tetrachloro-m-xylene | 24           | B07Q66                | J                     |  |  |  |  |
| B07Q66      | Decachlorobiphenyl   | 35           | B07Q66                | J                     |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       | <u> </u>              |  |  |  |  |
|             |                      |              | ·                     |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |

#### **CALIBRATION DATA SUMMARY**

| SDG: B07Q63  | REVIEWER: RI | 3          | DATE: 4/ | 13/93     | PAGE_1              | OF_1_     |
|--------------|--------------|------------|----------|-----------|---------------------|-----------|
| COMMENTS:    |              |            |          |           |                     |           |
| CALIB. TYPE: | INITIAL      | CONTINUING | INSTRUM  | ENT:      |                     |           |
| CALIB. DATE  | COMPOUND     |            | RF       | RSD/%D/%R | SAMPLES<br>AFFECTED | QUALIFIER |
| 1/5/93       | alpha-BHC    |            |          | 19.7      | All                 | 1         |
| 1/5/93       | delta-BHC    |            |          | 18.3      | All                 | J         |
|              |              |            |          | _         |                     |           |
|              |              |            |          |           |                     |           |
|              |              |            |          |           |                     |           |
|              |              |            |          |           |                     |           |
|              |              |            |          |           |                     |           |
|              |              |            |          |           |                     |           |
|              |              |            |          |           |                     |           |
|              |              |            |          |           |                     |           |
|              |              |            |          |           |                     |           |
|              |              | -          |          |           |                     |           |
|              |              |            |          |           |                     |           |
|              |              |            |          |           |                     |           |
|              |              |            |          |           |                     |           |
|              |              |            |          |           |                     |           |

#### ACCURACY DATA SUMMARY

| SDG: B07Q63                           | REVIEWER: RB         | DATE:4/13/93 | PAG                   | E_1_OF_1_             |
|---------------------------------------|----------------------|--------------|-----------------------|-----------------------|
| COMMENTS:                             |                      |              |                       |                       |
| SAMPLE ID                             | COMPOUND             | % RECOVERY   | SAMPLE(S)<br>AFFECTED | QUALIFIER<br>REQUIRED |
| B07Q66                                | Tetrachloro-m-xylene | 24           | B07Q66                | 1                     |
| B07Q66                                | Decachlorobiphenyl   | 35           | B07Q66 .              | J                     |
|                                       |                      |              |                       |                       |
|                                       |                      |              |                       |                       |
|                                       |                      |              |                       |                       |
|                                       |                      |              |                       |                       |
|                                       |                      |              |                       |                       |
| <u> </u>                              |                      |              |                       |                       |
|                                       |                      |              |                       |                       |
|                                       |                      |              |                       |                       |
|                                       |                      |              |                       |                       |
|                                       |                      |              |                       |                       |
| · · · · · · · · · · · · · · · · · · · |                      |              |                       |                       |

4-12

#### **CALIBRATION DATA SUMMARY**

| SDG: B07Q63  | REVIEWER: RB |            | DATE: 4/ | 13/93     | PAGE_1_OF_1_        |           |  |
|--------------|--------------|------------|----------|-----------|---------------------|-----------|--|
| COMMENTS:    |              |            |          | ·         |                     |           |  |
| CALIB. TYPE: | INITIAL      | CONTINUING | INSTRUM  | ENT:      |                     |           |  |
| CALIB. DATE  | COMPOUND     |            | RF       | RSD/%D/%R | SAMPLES<br>AFFECTED | QUALIFIER |  |
| 1/5/93       | alpha-BHC    |            |          | 19.7      | All                 | J         |  |
| 1/5/93       | delta-BHC    |            |          | 18.3      | All                 | J .       |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          |           |                     | - 219     |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          |           |                     | 34.       |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          |           |                     |           |  |
|              |              |            |          | ·         |                     |           |  |

**ACCURACY DATA SUMMARY** 

| WHC-SD-EN-TI-15 |
|-----------------|
| 7,              |
| Rev.            |
| 0               |
|                 |
|                 |

| SDG: B07Q63 | REVIEWER: RB         | DATE:4/13/93 | PAG                   | E_1_OF_1_             |  |  |  |  |
|-------------|----------------------|--------------|-----------------------|-----------------------|--|--|--|--|
| COMMENTS:   |                      |              |                       |                       |  |  |  |  |
| SAMPLE ID   | COMPOUND             | % RECOVERY   | SAMPLE(S)<br>AFFECTED | QUALIFIER<br>REQUIRED |  |  |  |  |
| B07Q66      | Tetrachloro-m-xylene | 24           | B07Q66                | J                     |  |  |  |  |
| B07Q66      | Decachlorobiphenyl   | 35           | B07Q66                | J                     |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |
|             |                      |              |                       |                       |  |  |  |  |

#### DATA QUALIFICATION SUMMARY

| DATA QUALIFICATION SUMMARY  |              |                     |                        |  |  |  |  |  |
|-----------------------------|--------------|---------------------|------------------------|--|--|--|--|--|
| SDG: B07Q63                 | REVIEWER: RB | DATE: 4/13/93       | PAGE_1_OF_1            |  |  |  |  |  |
| COMMENTS:                   |              |                     |                        |  |  |  |  |  |
| COMPOUND                    | QUALIFIER    | SAMPLES<br>AFFECTED | REASON                 |  |  |  |  |  |
| All pesticide/PCB compounds | J            | All                 | Holding times exceeded |  |  |  |  |  |
| alpha-BHC                   |              | All                 | Initial calibration    |  |  |  |  |  |
| delta-BHC                   | J            | Ail                 | Initial calibration    |  |  |  |  |  |
| All pesticide/PCB compounds | J            | B07Q66              | Surrogate recovery     |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |
|                             |              |                     |                        |  |  |  |  |  |

## THIS PAGE INTENTIONALLY LEFT BLANK

| SAMPLE LOCATION INFORMATION | WELL AND SAMPLE INFORMATION |        |                 |                 |  |
|-----------------------------|-----------------------------|--------|-----------------|-----------------|--|
| INORGANICS                  | DATE<br>GEJGMAS             | XISTAM | SAMPLE          | POCATION SAMPLE |  |
| 6-5                         | 12/09/92                    | S      | BO7Q52          | 150-N-1         |  |
| 6-9                         | T5/09/55                    | s      | B07Q53          |                 |  |
| 6-9                         | 75/60/21                    | S      | B07Q54          |                 |  |
| 6-9                         | TS/09/92                    | s      | BO7Q55          |                 |  |
| 6-9                         | 75/09/95                    | s      | B07Q56          |                 |  |
| 6-9                         | 75/09/95                    | S      | BOZOSZ          |                 |  |
| 6-9                         | 75/09/95                    | s      | B07Q58          |                 |  |
| 6-9                         | 75/00/2T                    | s      | 80708           |                 |  |
| 6-5                         | 75/09/92                    | s      | B07Q60          |                 |  |
| 6~ <b>9</b>                 | 75/00/27                    | s      | BOZOGI          | ,               |  |
| 6-9                         | 75/09/92                    | Š      | B07062          |                 |  |
| 6-5                         | 75/18/92                    | S      | B07Q63          |                 |  |
| 91-9<br>91-9                | Z6/8T/ZT                    | 8      | B07064          |                 |  |
| 91-9<br>91 <b>-</b> 9       | 75/18/92                    | S      | 807065          |                 |  |
| ST-S                        | 72/18/92                    | ទ      | 80706           | •               |  |
| 91-9<br>91-9                | 75/81/21                    | S      | B07067          |                 |  |
| 91-9<br>91-9                | 75/18/92<br>75/18/92        | S      | 890708          |                 |  |
| 9T-9                        | 75/78/35                    | S      | 807 <u>0</u> 69 |                 |  |
| ST-S                        | 75/78/35                    | S      | BOYON           |                 |  |
| SI-S                        | 75/75/75                    | s      | BOYOZ           |                 |  |
| <u> </u>                    | 12/18/92                    | S      | B07Q73          |                 |  |

ţ-g

## THIS PAGE INTENTIONALLY LEFT BLANK

#### 5.0 INORGANIC DATA VALIDATION

#### 5.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) were submitted and found to be complete:

B07Q52

-0

50.82

0

B07Q63

#### 5.2 HOLDING TIMES

Analytical holding times for ICP metals, GFAA metals, and CVAA mercury analyses were assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: samples must be analyzed within twenty-eight days for mercury, 14 days for cyanide, and within six months for all other metals.

All holding time requirements for all analytes in all data packages were met for this report.

#### 5.3 INSTRUMENT PERFORMANCE AND CALIBRATIONS

Performance of specific instrument quality assurance and quality control procedures, including deficiencies noted during the quality assurance review, are outlined below.

Three calibration standards and a blank were analyzed for arsenic, selenium, thallium, and lead by GFAA. The correlation coefficient of a least squares linear regression met the requirements for calibration in all cases.

Up to five calibration standards and a blank were analyzed for mercury by CVAA. The correlation coefficient of a least squares linear regression met the requirements for calibration.

At least one standard and a blank were analyzed by ICP for all other elements.

The above calibrations were each immediately verified with an ICV standard and a calibration blank. The ICV was prepared from a source independent of the calibration standards, at a mid-calibration range concentration. The ICV percent recovery must fall within the control limits of 90 to 110 percent for metals analyzed by ICP and GFAA, and 80 to 120 percent for

mercury. Calibration linearity near the detection limit was verified with a standard prepared at a concentration near the CRDL.

The ICVs met the recommended control limits for all cases.

The calibrations were subsequently verified at regular intervals using a CCV standard. The control windows for percent recovery of CCV standards are the same as the ICV windows described above.

The CCVs met the recommended control limits in all cases.

#### 5.3.1 ICP Calibration

0

An ICS was analyzed at the beginning and end of each ICP sample run to verify the laboratory interelement and background correction factors. Results for the ICS solution must fall within the control limit of  $\pm 20$  percent of the true value.

A five-fold serial dilution is required for all elements analyzed by ICP. The subsequent concentrations of the reanalysis are compared with the original analysis. If the analyte concentration is sufficiently high (a minimum factor of 50 above the IDL) then the serial dilution must agree within 10% of the original determination after correction for dilution.

The ICS has been analyzed at the proper frequency and all ICSAB solution percent recovery values fell within the control limit.

#### 5.3.2 Atomic Absorption Calibrations

Duplicate injections are required for all GFAA analyses. The duplicate injections establish the precision of the individual analytical determinations. For sample concentrations greater than the CRDL, duplicate injections must agree within ±20 percent RSD.

All duplicate injection quality control requirements were acceptable.

#### 5.3.3 Cyanide Analysis Calibrations

Cyanide analysis was performed by mid-distillation under Method 335.2 CLP-M (semi-automated spectrophotometric). The detection limit for the semi-automated colorimetric method is approximately 10 ug/L.

The cyanide as hydrocyanic acid (HCN) is released from cyanide complexes by means of mid-reflux-distillation operation and absorbed in a scrubber containing sodium hydroxide solution. The cyanide ion in the absorbing solution is then determined colorimetrically.

All results fell within the acceptable limits.

#### 5.4 BLANKS

600

1.7

Samples with digestate concentrations (in ug/L) of less than five times (<5x) the highest amount found in any of the associated blanks have had their associated values qualified as non-detected (U). Samples with concentrations of greater than five times (>5x) the highest amount found in any of the associated blanks do not require qualification.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for antimony:

- Sample numbers B07Q52, B07Q53, B07Q55, B07Q56, B07Q57, B07Q58, B07Q59, B07Q60, B07Q61 and B07Q62 in SDG No. B07Q52.
- Sample numbers B07Q63, B07Q64, B07Q65, B07Q66, B07Q67, B07Q68, B07Q69, B07Q71, B07Q72 and B07Q73 in SDG No. B07Q63.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for barium:

- Sample number B07Q55 in SDG No. B07Q52.
- Sample number B07Q63 in SDG No. B07Q63.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for beryllium:

 Sample numbers B07Q52, B07Q53, B07Q55, B07Q56, B07Q57, B07Q58, B07Q59, B07Q60, B07Q61 and B07Q62 in SDG No. B07Q52.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for cadmium:

 Sample numbers B07Q63, B07Q64, B07Q65, B07Q66, B07Q67, B07Q68, B07Q69, B07Q71, B07Q72 and B07Q73 in SDG No. B07Q63.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for calcium:

- Sample number B07Q55 in SDG No. B07Q52.
- Sample number B07Q63 in SDG No. B07Q63.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for chromium:

- Sample numbers B07Q52, B07Q53, B07Q55, B07Q56, B07Q57, B07Q58, B07Q59, B07Q60, B07Q61 and B07Q62 in SDG No. B07Q52.
- Sample numbers B07Q63, B07Q64, B07Q67, B07Q68 and B07Q73 in SDG No. B07Q63.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for copper:

- Sample number B07Q55 in SDG No. B07Q52.
- Sample numbers B07Q63, B07Q64, B07Q65, B07Q66, B07Q67, B07Q68, B07Q69, B07Q71, B07Q72 and B07Q73 in SDG No. B07Q63.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for manganese:

- Sample number B07Q55 in SDG No. B07Q52.
- Sample number B07Q63 in SDG No. B07Q63.

1

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for potassium:

Sample number B07Q55 in SDG No. B07Q52.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for silver:

- Sample numbers B07Q52, B07Q53, B07Q55, B07Q56, B07Q57, B07Q58, B07Q59, B07Q60, B07Q61 and B07Q62 in SDG No. B07Q52.
- Sample numbers B07Q63, B07Q64, B07Q65, B07Q66, B07Q67, B07Q68, B07Q69, B07Q71, B07Q72 and B07Q73 in SDG No. B07Q63.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for sodium:

- Sample number B07Q55 in SDG No. B07Q52.
- Sample numbers B07Q63, B07Q68 and B07Q69 in SDG No. B07Q63.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for thallium:

 Sample numbers B07Q52, B07Q53, B07Q55, B07Q56, B07Q57, B07Q58, B07Q59, B07Q60, B07Q61 and B07Q62 in SDG No. B07052.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for vanadium:

Sample numbers B07Q63 and B07Q68 in SDG No. B07Q63.

Due to the presence of laboratory blank contamination, the following samples were flagged "U" for zinc:

- Sample number B07Q55 in SDG No. B07Q52.
- Sample numbers B07Q63, B07Q68 and B07Q69 in SDG No. B07Q63.

  All other laboratory blank results were acceptable.

#### 5.5 ACCURACY

.0

\*\*:-

1

#### 5.5.1 Matrix Spike Recovery

Matrix spike analyses are used to assess the analytical accuracy of the reported data and the effect of the matrix on the ability to accurately quantify sample concentrations. Matrix spike recoveries must generally fall within the range of 75 to 125 percent. Results which fall outside the QC range are qualified as estimates and flagged "J". Samples with a spike recovery of less than 30% and a sample value below the IDL were rejected and flagged "R".

Matrix spike recoveries fell outside the quality control requirement for antimony in SDG Nos. B07Q52 and B07Q63.

Matrix spike recoveries fell outside the quality control requirement for manganese in SDG No. B07Q52.

Matrix spike recoveries fell outside the quality control requirement for selenium in SDG Nos. B07Q52 and B07Q63.

Matrix spike recoveries fell outside the quality control requirement for cyanide in SDG No. B07Q52.

All other matrix spike recovery results were acceptable.

#### 5.5.2 Laboratory Control Sample Recovery

The LCS monitors the overall performance of the analysis, including the sample preparation. An LCS should be digested or distilled and analyzed with every group of samples which have been prepared together. The performance criteria for solid LCS samples are established through interlaboratory studies coordinated by a certifying agency (e.g., EPA or an independent commercial supplier).

One solid LCS was digested and analyzed for each of the cases in this report that contained soil samples. The results were compared against the established control limits as required by the USEPA CLP SOW 7/88 and 3/90 protocols.

All results were found to be acceptable.

#### 5.6 PRECISION

 $\Box$ 

٠,٠

0

#### 5.6.1 Laboratory Duplicate Samples

The laboratory duplicate results measures the precision of the method by measuring a second aliquot of the sample that is treated the same way as the original. Samples whose precision fell outside the quality control requirements were qualified as estimates and flagged "J".

The laboratory duplicate results fell outside the established QC limits for calcium in SDG No. B07Q52.

The laboratory duplicate results fell outside the established QC limits for lead in SDG No. B07Q63.

The laboratory duplicate results fell outside the established QC limits for manganese in SDG No. B07Q52.

The laboratory duplicate results fell outside the established QC limits for zinc in SDG No. B07Q52.

All other laboratory duplicate recovery results were acceptable.

#### 5.6.2 ICP Serial Dilution

The ICP serial dilution is used to determine whether significant physical or chemical interferences exist due to sample matrix. If sample concentration is  $\geq 50$  times the IDL for an analyte and the D is outside the control limits the associated data must be qualified as estimates "J".

The ICP serial dilution results fell outside the established QC limits for barium in SDG No. B07Q63.

The ICP serial dilution results fell outside the established QC limits for zinc in SDG No. B07Q52.

All other ICP serial dilution results were acceptable.

#### 5.7 FURNACE AA QUALITY CONTROL

The post-digestion analytical spike is analyzed to determine the extent of interference in the digestate matrix. When the results of the analytical spike analyses exceeds the control window of 85 to 115 percent recovery and the absorbance of the sample is greater than fifty percent of the analytical spike absorbance, then the sample must be reanalyzed using the MSA. The duplicate injections and the analytical spike recoveries establish the precision and accuracy of the individual GFAA determinations.

#### 5.7.1 Duplicate Injections

Duplicate injection results fell outside the quality control limit for selenium. The associated results were qualified as estimates and flagged "J":

• Sample number B07Q73 in SDG No. B07Q63.

All other duplicate injection quality control requirements were met.

#### 5.7.2 Analytical Spike Recoveries

5

\*\*

~~

1

For all samples whose analytical spike results were outside the 85 to 115 percent control limit, but whose absorbances are less than 50 percent of the analytical spike absorbance, the samples were flagged as estimates "J".

The analytical spike recovery fell outside the established OC limits for arsenic:

Sample numbers B07Q52 and B07Q53 in SDG No. B07Q52.

The analytical spike recovery fell outside the established QC limits for selenium:

- Sample numbers B07Q52, B07Q53, B07Q55, B07Q56, B07Q57, B07Q58 and B07Q62 in SDG No. B07Q52.
- Sample numbers B07Q71, B07Q72 and B07Q73 in SDG No. B07Q63.

The analytical spike recovery fell outside the established QC limits for thallium:

- Sample numbers B07Q56 and B07Q62 in SDG No. B07Q52.
- Sample number B07Q73 in SDG No. B07Q63.

All other analytical spike recovery results were acceptable.

#### 5.8 ANALYTE QUANTITATION AND DETECTION LIMITS

Twenty percent of sample results and reported detection limits were recalculated to ensure that the reported results were accurate. Raw data were examined for anomalies, transcription errors, and reduction errors.

The reviewer verified that the results and detection limits fell within the linear range of the instrument.

#### 5.9 OVERALL ASSESSMENT AND SUMMARY

 $\bigcirc$ 

 $\bigcirc$ 

**√** 

. .

0

All samples were analyzed and reported under the 1990 CLP protocol (EPA 1990). Several inconsistencies and deviations from the protocol were observed. They are as follows:

CCV and CCB must be analyzed immediately after the ICV and ICB. ICAP, Mercury and Cyanide do not follow this protocol. For ICAP analysis a CCV and CCB were run after the initial interference checks and CRI. This is incorrect since the ICSA/AB and CRII are considered analytical samples and according to the CLP protocol a CCV and CCB must be run prior to any analytical samples. For mercury and cyanide the CCV and CCB were analyzed for after the first ten samples. Refer to Sections E-11 paragraph 2b and E-12 paragraph 4a of the USEPA CLP SOW 3/90 protocol.

Internal chain of custodies are insufficient.

Interdepartmental transfers are not shown (i.e., from the sample custodian to metals department, etc.). Refer to Sections F-2 paragraph 1.2 and F-3 paragraph 1.4 of the USEPA CLP SOW 3/90.

The mercury ICV appears to have been analyzed at a 2X dilution. Result which appears on Form 2A is exactly 2 times the result found in the raw data, however, this is not indicated on the raw data. Laboratory must verify results and properly label raw data with the correct dilution factor.

All other data are usable for all purposes.

| Location         120-N-1         1           Remarks         DUP         EB         EB         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92         12/09/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 307Q62<br>20-N-1<br>2/09/92<br>Result Q<br>3280 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Sample Number   B07Q52   B07Q53   B07Q55   B07Q56   B07Q57   B07Q58   B07Q59   B07Q60   B07Q61   B07   | 2/09/92<br>Result Q<br>3280                     |
| Location   120-N-1   120   | 2/09/92<br>Result Q<br>3280                     |
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/09/92<br>Result Q<br>3280                     |
| Sample Date 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92 12/09/92  | Result Q<br>3280                                |
| Inorganic Analytes CRQL Result Q Result | Result Q<br>3280                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3280                                            |
| Aluminum 200 4330 J 5520 J 61.3 3980 4610 4610 3270 3110 2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 111                                           |
| Antimony 60 4.4 UJ 4.1 UJ 3.7 UJ 3.9 UJ 4.2 UJ 4 UJ 4 UJ 3.7 UJ 3.9 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 100                                           |
| Arsenic 10 1.2 J 1.7 J 0.73 U 0.9 1.2 0.93 0.75 0.73 U 0.76 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.74 J                                          |
| Barium 200 83.2 93.7 0.47 U 41.9 75.5 67 55.1 44.2 39.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.4                                            |
| Beryllium 5 0.21 U 0.19 U 0.17 U 0.18 U 0.2 U 0.19 U 0.19 U 0.17 U 0.19 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.19 U                                          |
| Cadmium 5 0.32 U 0.3 U 0.27 U 0.28 U 0.31 U 0.29 U 0.3 U 0.27 U 0.29 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.29 U                                          |
| Calcium 5000 6720 J 9170 J 34.2 UJ 4420 J 5490 J 4940 J 3320 J 3990 J 4270 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4460 J                                          |
| Chromium 10 5.9 U 8.4 U 0.82 U 2.7 U 5.5 U 5.6 U 2.4 U 1.4 U 1.4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3 U                                           |
| Cobalt 50 9.8 10.7 0.62 U 8.8 11.2 13.4 10.2 8.8 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                              |
| Copper 25 27.8 28.7 3.7 U 18.5 20 18.2 11.3 14.6 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.2                                            |
| Iron 100 20400 23800 247 23100 24600 29500 23000 23500 23600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19100                                           |
| Lead 3 4 J 5.5 J 0.29 U 2.8 4.1 2.7 2.6 1.9 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2                                             |
| Magnesium 5000 3950 J 5320 J 12.8 U 2880 3400 4260 2330 3410 3430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2730                                            |
| Manganese 15 180 J 227 J 0.52 UJ 186 J 219 J 275 J 167 J 169 J 197 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 174 J                                           |
| Mercury 0.2 0.14 J 0.37 J 0.05 U 0.07 0.15 0.12 0.19 0.06 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                            |
| Nickel 40 7.7 8.2 1 U 3.8 5.8 5.8 3.9 5.1 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.7                                             |
| Potassium 5000 305 427 24.1 U 327 376 409 296 351 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 236                                             |
| Selenium 5 0.76 UJ 0.69 UJ 0.67 J 0.7 UJ 0.72 UJ 0.67 UJ 0.67 UJ 0.65 UJ 0.68 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.66 UJ                                         |
| Silver 10 1.1 U 0.99 U 0.89 U 0.93 1 U 0.96 U 0.97 U 0.89 U 0.95 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 U                                             |
| Sodium 5000 268 320 24.4 U 508 442 516 522 523 474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 458                                             |
| Thallium 10 0.44 U 0.4 U 0.37 U 0.4 UJ 0.42 U 0.39 U 0.39 U 0.37 U 0.39 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.38 UJ                                         |
| Vanadium 50 56.6 61.2 0.78 U 47.3 69.4 70 66.1 43.8 46.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.3                                            |
| Zinc 20 76.1 J 94.4 J 3.5 UJ 42.2 J 77.4 J 57.4 J 41.6 J 36.2 J 41.2 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.4 J                                          |
| Cyanide 10 0.61 UJ 0.55 UJ 0.47 U 0.52 UJ 0.57 UJ 0.51 UJ 0.5 UJ 0.52 UJ 0.51 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5 UJ                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRE-S.                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |

#### BLANK AND SAMPLE DATA SUMMARY

| SDG: B07Q52 | REVIEWER: LM |        |       | DAT | E: 4/20/9 | 3                |               | PAGE_1              | _OF_1_    |
|-------------|--------------|--------|-------|-----|-----------|------------------|---------------|---------------------|-----------|
| COMMENTS:   |              |        |       |     |           |                  |               |                     |           |
| SAMPLE ID   | COMPOUND     | RESULT | Q     | RT  | UNITS     | 5X<br>RESULT     | 10X<br>RESULT | SAMPLES<br>AFFECTED | QUALIFIER |
| ICB         | Antimony     | 24.4   |       |     | ug/L      | 122.0            | 244.0         | All                 | U ,       |
| ССВ         | Barium       | 3.1    |       |     | ug/L      | 15.5             | 31.0          | B07Q55              | U .       |
| ССВ         | Beryllium    | 2:8    |       |     | ug/L      | 14.0             | 28.0          | Ail                 | U         |
| PBS         | Calcium      | 67.8   |       |     | ug/L      | 349.0            | 678.0         | B07Q55              | U         |
| ССВ         | Chromium     | -8,4   |       |     | ug/L      | -42.0            | -84.0         | Ail                 | U         |
| PBS         | Copper       | 6.0    |       | `   | ug/L      | 30.0             | 60.0          | B07Q55              | U         |
| ССВ         | Manganese    | 2.0    |       |     | ug/L      | 10.0             | 20.0          | B07Q55              | U         |
| ССВ         | Potassium    | -213.3 |       |     | ug/L      | 1066.0           | 2133.0        | B07Q55              | U         |
| ССВ         | Silver       | 5.2    |       |     | ug/L      | 26.0             | 52.0          | All                 | U         |
| PBS         | Sodium       | 86.6   |       |     | ug/L      | 433              | 866.0         | B07Q55              | U         |
| ССВ         | Thallium     | -2.4   |       |     | ug/L      | -12.0            | -24.0         | Ali                 | U         |
| PBS         | Zinc         | 16.4   | · · · |     | ug/L      | 82.0             | 164.0         | B07Q55              | U         |
|             |              |        |       |     |           |                  |               |                     |           |
|             |              |        |       |     |           |                  |               |                     |           |
|             |              |        |       |     |           |                  |               |                     |           |
|             |              |        |       |     |           |                  |               | -                   |           |
| <del></del> |              |        |       |     |           | ·· <del>··</del> |               |                     |           |

#### ACCURACY DATA SUMMARY

| SDG: B07Q52 | REVIEWER: LM | DATE: 4/20/93 | PAG                   | E_1_OF_1_             |
|-------------|--------------|---------------|-----------------------|-----------------------|
| COMMENTS:   |              |               |                       |                       |
| SAMPLE ID   | COMPOUND     | % RECOVERY    | SAMPLE(S)<br>AFFECTED | QUALIFIER<br>REQUIRED |
| B07Q62S     | Antimony     | 71.7          | All                   | J                     |
| B07Q62S     | Manganese    | 52.9          | All                   | 1                     |
| B07Q62S     | Selenium     | 41.2          | All                   | 1                     |
| B07Q62S     | Cyanide      | 73.2          | All                   | J                     |
| B07Q52A     | Arsenic      | 83.2          | B07Q52                | J                     |
| B07Q53A     | Arsenic      | 84.3          | B07Q53                | J                     |
| B07Q52A     | Selenium     | 79.9          | B07Q52                | 1                     |
| B07Q53A     | Selenium     | 80.6          | B07Q53                | J                     |
| B07Q55A     | Selenium     | 71.8          | B07Q55                | 1                     |
| B07Q56A     | Selenium     | 49.9          | B07Q56                | 1                     |
| B07Q57A     | Selenium     | 78.0          | B07Q57                | 1                     |
| B07Q58A     | Selenium     | 81.9          | B07Q58                | 1                     |
| B07Q62A     | Selenium     | 60.3          | B07Q62                | J                     |
| B07Q56A     | Thallium     | 76.6          | B07Q56                | 1                     |
| B07Q62A     | Thallium     | 82.7          | B07Q62                | J                     |
|             |              |               |                       |                       |
|             |              |               |                       |                       |

#### PRECISION DATA SUMMARY

| SDG: B07Q52 | REVIEWER: LM |            | DATE: 4/20/93 |      | PAGE_1_OF_       | 1_        |
|-------------|--------------|------------|---------------|------|------------------|-----------|
| COMMENTS:   |              |            |               |      |                  |           |
| COMPOUND    |              | SAMPLE ID: | SAMPLE ID:    | RPD  | SAMPLES AFFECTED | QUALIFIER |
| Calcium     |              | B07Q62     | B07Q62D       | 31.5 | All              | J         |
| Manganese   |              | B07Q62     | B07Q62D       | 26.0 | All              | 1         |
| Zinc        |              | B07Q62     | B07Q62D       | 21.4 | All              | J         |
| Zinc        |              | B07Q62     | B07Q62L       | 13.6 | All              | J         |
| Aluminum    |              | B07Q52     | B07Q53        | 24.1 | B07Q52, B07Q53   | J         |
| Calcium     |              | B07Q52     | B07Q53        | 30.1 | B07Q52, B07Q53   | J         |
| Lead        |              | B07Q52     | B07Q53        | 31.5 | B07Q52, B07Q53   | J         |
| Magnesium   |              | B07Q52     | B07Q53        | 29.5 | B07Q52, B07Q53   | J         |
| Manganese   | ŕ            | B07Q52     | B07Q53        | 23.1 | B07Q52, B07Q53   | J         |
| Мегсигу     |              | B07Q52     | B07Q53        | 90.2 | B07Q52, B07Q53   | J         |
| Zinc        |              | B07Q52     | B07Q53        | 21.5 | B07Q52, B07Q53   | ]         |
|             |              |            |               |      | •                |           |
|             |              |            |               |      |                  |           |
|             |              |            |               |      |                  |           |
|             |              |            |               |      |                  |           |
|             |              |            |               |      |                  |           |
|             |              |            |               |      |                  |           |

C

#### WHC-SD-EN-TI-157, Rev. 0

#### DATA QUALIFICATION SUMMARY

| SDG: B07Q52                                      | REVIEWER: LM   | DATE: 4/20/93                                                | PAGE 1 OF 2                     |
|--------------------------------------------------|----------------|--------------------------------------------------------------|---------------------------------|
| COMMENTS:                                        | REVIEWER. LIVI | DATE. 4/20/93                                                | FAGE_1_OF_2_                    |
| COMPOUND                                         | QUALIFIER      | SAMPLES AFFECTED                                             | REASON                          |
| <del>                                     </del> | U              | All                                                          |                                 |
| Antimony                                         | <del></del>    |                                                              | Lab, Blank                      |
| Barium                                           | U              | B07Q55                                                       | Lab. Blank                      |
| Beryllium                                        | U              | All                                                          | Lab. Blank                      |
| Calcium                                          | U              | B07Q55                                                       | Lab. Blank                      |
| Chromium                                         | U              | All                                                          | Lab. Blank                      |
| Copper                                           | U .            | B07Q55                                                       | Lab. Blank                      |
| Manganese                                        | U              | B07Q55                                                       | Lab. Blank                      |
| Potassium                                        | ប              | B07Q55                                                       | Lab. Blank                      |
| Silver                                           | Ū              | All                                                          | Lab. Blank                      |
| Sodium                                           | U              | B07Q55                                                       | Lab. Blank                      |
| Thallium                                         | U              | All                                                          | Lab. Blank                      |
| Zinc                                             | U              | B07Q55                                                       | Lab. Blank                      |
| Antimony                                         | J              | Ali                                                          | Matrix Spike                    |
| Manganese                                        | J              | All                                                          | Matrix Spike                    |
| Selenium                                         | 1              | All                                                          | Matrix Spike                    |
| Cyanide                                          | 1              | All                                                          | Matrix Spike                    |
| Arsenic                                          | J              | B07Q52, B07Q53                                               | GFAA Analytical Spike           |
| Selenium                                         | J              | B07Q52, B07Q53, B07Q55,<br>B07Q56, B07Q57, B07Q58,<br>B07Q62 | GFAA Analytical Spike           |
| Thallium                                         | J              | B07Q56, B07Q62                                               | GFAA Analytical Spike           |
| Calcium                                          | J              | All                                                          | Dup. RPD                        |
| Manganese                                        | J              | All                                                          | Dup. RPD                        |
| Zinc                                             | J              | All                                                          | Dup. RPD/ICP Serial<br>Dilution |
| Aluminum                                         | J              | B07152, B07Q53                                               | Field Duplicate RPD             |
| Calcium                                          | J              | B07Q52, B07Q53                                               | Field Duplicate RPD             |
| Lead                                             | J              | B07Q52, B07Q53                                               | Field Duplicate RPD             |

#### DATA QUALIFICATION SUMMARY

| SDG: B07Q52 | REVIEWER: LM | DATE: 4/20/93    | PAGE 2 OF 2         |
|-------------|--------------|------------------|---------------------|
| COMMENTS:   |              | <del>-</del>     |                     |
| COMPOUND    | QUALIFIER    | SAMPLES AFFECTED | REASON              |
| Magnesium   | 1            | B07Q52, B07Q53   | Field Duplicate RPD |
| Manganese   | J            | B07Q52, B07Q53   | Field Duplicate RPD |
| Mercury     | 1            | B07Q52, B07Q53   | Field Duplicate RPD |
| Zinc        | 1            | B07Q52, B07Q53   | Field Duplicate RPD |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |
|             |              |                  |                     |

#### INORGANIC ANALYSIS, SOIL MATRIX, (mg/Kg)

Page\_1\_ of\_1\_

| Project: WESTING   | IOUSE-I      | IANFOR   | D | 1             |    |          |                 |          |              |               |          |          |    |             |              |          |          |          |                                                  |          |                |
|--------------------|--------------|----------|---|---------------|----|----------|-----------------|----------|--------------|---------------|----------|----------|----|-------------|--------------|----------|----------|----------|--------------------------------------------------|----------|----------------|
| Laboratory: TMA    | <del></del>  |          |   | 1             |    |          |                 |          |              |               |          |          |    |             |              |          |          |          |                                                  |          |                |
| Case               | SDG: B       | 07Q63    |   | 1             |    |          |                 |          |              |               |          |          |    |             |              |          |          |          |                                                  |          |                |
| Sample Number      | <del>1</del> | B07Q63   |   | B07Q64 B07Q65 |    | B07Q66   | B07Q66 B07Q67 B |          | B07Q68       | B07Q68 B07Q69 |          | B07Q71   |    | B07Q72      | ,            | B07Q73   |          |          |                                                  |          |                |
| Location           |              | 120-N-   | 1 | 120-N-        | 1  | 120-N-   |                 | 120-N-   |              | 120-N-        |          | 120-N-   |    | 120-N-1     |              | 120-N-   |          | 120-N-   |                                                  | 120-N-1  |                |
| Remarks            |              | EB       |   |               |    |          |                 |          | <del>-</del> | 1             | -        |          |    | 1.20 13     |              | 1.20 13  | <u> </u> | Duplical |                                                  |          | <u> </u>       |
| Sample Date        |              | 12/18/93 | 3 | 12/18/93      | 3  | 12/18/93 | 3               | 12/18/93 | 3            | 12/18/93      | 3        | 12/18/93 | 1  | 12/18/93    | _            | 12/18/93 | 1        | 12/18/93 |                                                  | 12/18/93 | <del></del>    |
| Inorganic Analytes | CROL         | Result   | Q | Result        | Q  | Result   | Q               | Result   | Q            | Result        | Q        | Result   | Q  |             | Q            |          | Q        |          | a                                                | 1        | ía             |
| Aluminum           | 200          | 47.5     |   | 2570          |    | 4760     |                 | 5210     |              | 3170          |          | 2730     |    | 3650        | <del> </del> | 4360     | J        | 3500     | J                                                | 4130     | <del>  =</del> |
| Antimony           | 60           | 3.8      | W | 3.7           | UJ | 4.2      | UJ              | 3.8      | UJ           | 3.6           | UJ       | 3.6      | W  |             | w            | 3.8      | ŪJ       |          | UJ                                               |          | ŪĴ             |
| Arsenic            | 10           | 0.66     |   | 0.84          |    | 1.5      | Г               | 1.4      |              | 0.97          |          | 0.76     |    | 0.79        | -            | 2.1      |          | 0.89     | 1                                                | 0.72     | <del> </del>   |
| Barlum             | 200          | 0.60     | W | 50.8          | J  | 38.7     | J               | 51.0     | J            | 43.1          | J        | 30.3     | J  | 27.4        | J            | 37.2     | J        | 54.5     | J                                                | 32.3     | J              |
| Beryllium          | 5            | 0.18     | U | 0.17          | U  | 0.20     | U               | 0.18     | U            | 0.17          | U        |          | Ū  |             | Ū            | 0.18     | Ū        | 0.19     | lu                                               | 0.20     | Ū              |
| Cadmium            | 5            | 0.28     | Ū | 0.27.         | U  | 0.31     | U               | 0.28     | U            | 0.27          | U        |          | Ū  | 0.29        | Ū            | 0.28     | Ū        | 0.29     | ΙŪ                                               | 0.31     | Ū              |
| Calcium            | 5000         | 13.1     | U | 3930          |    | 2060     |                 | 2030     |              | 4410          |          | 1080     |    | 1220        | <u> </u>     | 1960     | _        | 2400     | 广                                                | 1880     | ⇈              |
| Chromium           | 10           | 0.84     | U | 2.3           | U  | 10.7     |                 | 12.2     |              | 3.4           | u        | 4.9      |    | 7.7         | ┢┈           | 9.3      | _        | 6.2      | t                                                |          | 11             |
| Cobatt             | 50           | 0.64     | U | 7.8           | Г  | 4.8      |                 | 5.5      |              | 9.2           | $\vdash$ | 2.7      | _  | 6.2         | Н            | 6.4      | $\vdash$ | 6.6      | $\vdash$                                         | 6.5      | 亡              |
| Copper             | 25           | 7.1      | Ü | 19.1          | J  | 18.0     | U               | 17.5     | U            | 16.7          | U        | 8.8      | U  |             | U            | 16.2     | U        |          | U                                                |          | u              |
| Iron               | 100          | 189      |   | 19200         |    | 11700    |                 | 12200    |              | 22000         | <u> </u> | 4650     |    | 5260        | Ħ            | 10500    | J        | 13900    | J                                                | 8840     | Ť              |
| Lead               | 3            | 0.49     | J | 1.9           | J  | 2.0      | J               | 2.4      | J            | 2.3           | J        | 2.0      | J  | <del></del> | J            | 2.0      | J        | 2.5      | J                                                | 2.2      | J              |
| Magnesium          | 5000         | 13.2     | U | 2730          |    | 3620     | Г               | 4160     |              | 3270          | П        | 1720     |    | 1950        |              | 3120     | Ē        | 2850     | 1                                                | 2240     |                |
| Manganese          | 15           | 0.76     | U | 165           |    | 169      |                 | 186      |              | 184           |          | 113      |    | 193         | <u> </u>     | 189      |          | 187      | <del>                                     </del> | 217      |                |
| Mercury            | 0.2          | 0.05     | U | 0.05          | U  | 0.05     | U               | 0.05     | U            | 0.05          | U        | 0.05     | U  | 0.05        | U            | 0.05     | U        | 0.05     | lυ                                               |          | ū              |
| Nickel             | 40           | 1.1      | 5 | 3.6           |    | 11.8     |                 | 11.8     |              | 4.2           | Т        | 8.0      |    | 8.9         |              | 10.2     |          | 8.1      | Τ-                                               | 9.4      |                |
| Potassium          | 5000         |          | 5 | 213           |    | 427      |                 | 909      |              | 302           |          | 413      |    | 560         |              | 552      |          | 388      | <b> </b>                                         | 469      |                |
| Selenium           | 5            |          | 3 | 0.78          | IJ | 0.92     | IJ              | 0.74     | IJ           | 0.77          | W        | 0.73     | IJ | 0.75        | IJ           | 0.79     | W        | 0.80     | UJ                                               | 0.83     | UJ             |
| Silver             | 10           | 0.92     | 5 | 0.89          | C  | 1.0      | U               | 0.92     |              | 0.88          | U        | 0.87     | υ  | 0.94        | U            | 0.93     | υ        | 0.95     | U                                                | 1.0      |                |
| Sodium             | 5000         | 19.6     | ٥ | 345           |    | 194      |                 | 237      |              | 497           |          | 123      | U  |             | U            | 234      |          | 270      |                                                  | 216      |                |
| Thallium           | 10           | 0.49     | ح | 0.54          | C  | 0.63     | U               | 0.50     | U            | 0.53          | U        | 0.50     | C  |             | U            |          | U        | 0.55     | U                                                |          | IJ             |
| Vanadium           | 50           | 0.80     | ٥ | 36.4          |    | 24.5     |                 | 24.7     |              | 47.2          |          | 8.5      | c  | 10.4        |              | 21.7     | J        | 28.2     | J                                                | 16.1     |                |
| Zinc               | 20           | 3.2      | Ü | 32.3          |    | 28.0     |                 | 30.1     | П            | 36.6          |          | 15.5     | Ü  | 17.5        | Ü            | 27.7     | j        | 27.8     | j                                                | 24.1     | $\vdash$       |
| Cyanide            | 10           | 0.51     | Ü | 0.52          | U  | 0.62     | U               | 0.51     | U            | 0.50          | Ü        | 0.48     | U  |             | U            | 0.52     | U        | 0.50     | U                                                |          | U              |
|                    |              |          |   |               |    |          |                 |          |              |               |          |          |    |             |              |          |          |          |                                                  |          | $\square$      |
|                    |              |          |   |               |    |          |                 |          |              |               |          |          |    |             |              |          |          |          |                                                  |          |                |
|                    |              |          |   |               |    |          |                 |          |              | 770           |          |          |    |             |              |          |          |          |                                                  |          |                |
|                    |              |          |   |               |    |          |                 |          |              |               |          |          |    |             |              |          |          |          |                                                  |          |                |
|                    |              |          |   |               |    |          |                 |          |              |               |          |          |    |             |              |          |          |          |                                                  |          |                |

#### **BLANK AND SAMPLE DATA SUMMARY**

| SDG: B07Q63 | REVIEWER: LM | 1      |   | DAT | E: 4/21/9 | 3            |               | PAGE_1_0                                     | OF_1_     |
|-------------|--------------|--------|---|-----|-----------|--------------|---------------|----------------------------------------------|-----------|
| COMMENTS:   |              |        | _ |     |           |              |               |                                              |           |
| SAMPLE ID   | COMPOUND     | RESULT | Q | RT  | UNITS     | 5X<br>RESULT | 10X<br>RESULT | SAMPLES<br>AFFECTED                          | QUALIFIER |
| ССВ         | Antimony     | 27.4   |   |     | ug/L      | 137.0        | 274.0         | All                                          | U         |
| ССВ         | Barium       | 9.0    |   |     | ug/L      | 45.0         | 90.0          | B07Q63                                       | U         |
| ССВ         | Cadmium      | 2.8    |   |     | ug/L      | 14.0         | 28.0          | All                                          | U         |
| PBS         | Calcium      | 79.2   |   |     | ug/L      | 396.0        | 792.0         | B07Q63                                       | U         |
| ССВ         | Chromium     | 5.5    |   |     | ug/L      | 27.5         | 55.0          | B07Q63, B07Q64,<br>B07Q67, B07Q68,<br>B07Q73 | U         |
| ССВ         | Copper       | 22.9   |   |     | ug/L      | 114.5        | 229.0         | All                                          | U         |
| ССВ         | Manganese    | 3.2    |   |     | ug/L      | 16.0         | 32.0          | B07Q63                                       | U -       |
| ССВ         | Silver       | 6.3    |   |     | ug/L      | 31.5         | 63.0          | Ali                                          | U .       |
| PBS         | Sodium       | 138.4  |   |     | ug/L      | 692.0        | 1384          | B07Q63, B07Q68,<br>B07Q69                    | U         |
| ССВ         | Vanadium     | 9.0    |   |     | ug/L      | 45.0         | 90.0          | B07Q63, B07Q68                               | U         |
| PBS :       | Zinc         | 17.4   |   |     | ug/L      | 87.0         | 174.0         | B07Q63, B07Q68,<br>B07Q69                    | U         |
|             |              |        |   |     |           |              |               |                                              |           |
|             |              |        |   |     |           |              |               |                                              |           |
|             |              |        |   |     |           |              |               |                                              | <u></u>   |

#### **ACCURACY DATA SUMMARY**

| SDG: B07Q63 | REVIEWER: LM | DATE: 4/21/93 | PAG                   | E_1_OF_1_             |
|-------------|--------------|---------------|-----------------------|-----------------------|
| COMMENTS:   |              |               |                       |                       |
| SAMPLE ID   | COMPOUND     | % RECOVERY    | SAMPLE(S)<br>AFFECTED | QUALIFIER<br>REQUIRED |
| B07Q73S     | Antimony     | 70.8          | All                   | J                     |
| B07Q73S     | Selenium     | 64.4          | All                   | J                     |
| B07Q71A     | Selenium     | 69.6          | B07Q71                | J                     |
| B07Q72A     | Selenium     | 80.2          | B07Q72                | J                     |
| B07Q73A     | Selenium     | 80.4          | B07Q73                | J                     |
| B07Q73A     | Thallium     | 79.6          | B07Q73                | J                     |
|             |              | ·             | -                     |                       |
|             |              |               |                       |                       |
|             |              |               |                       |                       |
|             |              |               |                       |                       |
|             |              |               |                       |                       |
|             |              |               |                       |                       |
|             |              |               |                       |                       |
|             |              |               |                       |                       |
|             |              |               |                       |                       |
|             |              |               | 1                     |                       |
| <del></del> |              |               |                       |                       |

PRECISION DATA SUMMARY

# WHC-SD-EN-TI-157, Rev. 0

| SDG: B07Q63 | REVIEWER: LM |            | DATE: 4/21/93 |       | PAGE_1_OF        | _1        |
|-------------|--------------|------------|---------------|-------|------------------|-----------|
| COMMENTS:   |              |            |               |       |                  |           |
| COMPOUND    |              | SAMPLE ID: | SAMPLE ID:    | RPD   | SAMPLES AFFECTED | QUALIFIER |
| Lead        |              | B07Q73     | B07Q73D       | 40.7  | All              | J         |
| Barium      |              | B07Q73     | B07Q73L       | 19.8  | All              | 1         |
| Aluminum    |              | B07Q71     | B07Q72        | 21.9  | B07Q71, B07Q72   | J         |
| Iron        |              | B07Q71     | B07Q72        | 66.5  | B07Q71, B07Q72   | J         |
| Vanadium    |              | B07Q71     | B07Q72        | 70.4  | B07Q71, B07Q72   | J         |
| Zinc        |              | B07Q71     | B07Q72        | 200.0 | B07Q71, B07Q72   | J         |
|             |              | -          |               |       |                  |           |
|             |              |            |               |       |                  |           |
|             |              |            |               |       |                  |           |
|             |              |            |               |       |                  |           |
| ····        |              |            |               |       |                  |           |
|             |              |            |               |       |                  |           |
|             |              |            |               |       |                  |           |
|             |              |            |               | 1     |                  |           |
|             |              |            |               |       |                  |           |
|             |              |            |               |       |                  |           |

### DATA QUALIFICATION SUMMARY

|             |              | · <u></u>                                 |                       |
|-------------|--------------|-------------------------------------------|-----------------------|
| SDG: B07Q63 | REVIEWER: LM | DATE: 4/21/93                             | PAGE_1_OF_1           |
| COMMENTS:   |              |                                           |                       |
| COMPOUND    | QUALIFIER    | SAMPLES AFFECTED                          | REASON                |
| Antimony    | U            | All                                       | Lab. Blank            |
| Barium      | U            | B07Q63                                    | Lab. Blank            |
| Cadmium     | U            | All                                       | Lab. Blank            |
| Calcium     | U            | B07Q63                                    | Lab. Blank            |
| Chromium    | U            | B07Q63, B07Q64, B07Q67,<br>B07Q68, B07Q73 | Lab. Blank            |
| Copper      | U            | All                                       | Lab. Blank            |
| Manganese   | U            | B07Q63                                    | Lab. Blank            |
| Silver      | U            | All                                       | Lab. Blank            |
| Sodium      | U            | B07Q63, B07Q68, B07Q69                    | Lab. Blank            |
| Vanadium    | U            | B07Q63, B07Q68                            | Lab. Blank            |
| Zinc        | U            | B07Q63, B07Q68, B07Q69                    | Lab. Blank            |
| Antimony    | J            | All                                       | Matrix Spike          |
| Selenium    | J            | All                                       | Matrix Spike          |
| Selenium    | J            | B07Q71, B07Q72, B07Q7                     | GFAA analytical spike |
| Thallium    | J            | B07Q73                                    | GFAa analytical spike |
| Lead        | J            | All                                       | Duplicate RPD         |
| Barium      | J            | All                                       | ICP serial dilution   |
| Selenium    | J            | B07Q73                                    | CV > 20%              |
| Aluminum    | J            | B07Q71, B07Q73                            | Field duplicate RPD   |
| Iron        | 1            | B07Q71, B07Q73                            | Field duplicate RPD   |
| Vanadium    | J            | B07Q71, B07Q73                            | Field duplicate RPD   |
| Zinc        | J            | B07Q71, B07Q73                            | Field duplicate RPD   |
|             |              |                                           |                       |
|             |              |                                           |                       |
|             |              |                                           |                       |
|             |              |                                           |                       |

 $\mathbf{O}$ 

## THIS PAGE INTENTIONALLY LEFT BLANK

| SAMPLE LOCATION INFORMATION | MEIT VND SYMBIE INEORWYLION |        |                    |                 |  |  |
|-----------------------------|-----------------------------|--------|--------------------|-----------------|--|--|
| MEL CHEWIZLEX               | DATE                        | XIATAM | NOMBEK<br>Symbie   | POCETION SANPLE |  |  |
| <b>7−9</b>                  | 75/09/55                    | S      | BO7Q52             | 750-N-7         |  |  |
| <b>7−9</b>                  | TS/09/95                    | S      | B07053             |                 |  |  |
| <b>7−9</b>                  | TS/09/92                    | S      | B07054             |                 |  |  |
| <b>7−9</b>                  | TS/60/2T                    | S      | BO7Q55             |                 |  |  |
| <b>7−9</b>                  | TS/00/65                    | S      | B07Q56             |                 |  |  |
| <b>7−9</b>                  | TS/00/2T                    | s      | BOZOSZ             |                 |  |  |
| <b>7−9</b>                  | TS/60/2T                    | S      | B07Q58             |                 |  |  |
| 7-9                         | TS/09/95                    | S      | B07059             |                 |  |  |
| <b>7−9</b>                  | 75/09/95                    | S      | 807060             |                 |  |  |
| <del>7</del> -9             | 75/09/92                    | Š      | 190708             |                 |  |  |
| <del>7</del> -9             | TS/09/92                    | S      | B07062             |                 |  |  |
| 8-9                         | 26/81/21                    | ន      | B07063             |                 |  |  |
| 8-9                         | TS/18/92                    | S      | B07064             |                 |  |  |
| 8 <b>-</b> 9                | 12/18/92                    | S      | 290708             |                 |  |  |
| 8-9<br>8-9                  | 72/81/21                    | S      | B07067             |                 |  |  |
| 8-9                         | 75/18/92<br>75/18/92        | ន      | B07Q67<br>  B07Q68 |                 |  |  |
| 8-9                         | 75/77/27                    | S      | B07Q69             |                 |  |  |
| 8-9                         | 75/78/95                    | S      | B07Q70             |                 |  |  |
| 8-9                         | 75/78/85                    | S      | BOYGY              |                 |  |  |
| 8~9                         | 75/78/35                    | S      | BOYQY2             |                 |  |  |
| 8-9                         | 75/78/85                    | S      | E7Q708             |                 |  |  |

T-9

## THIS PAGE INTENTIONALLY LEFT BLANK

#### 6.0 WET CHEMISTRY DATA VALIDATION

#### 6.1 DATA PACKAGE COMPLETENESS

The following data packages (SDG Nos.) data packages were submitted and reviewed for completeness:

B07Q52

C

F-4-14

3

0

B07Q63

#### 6.2 HOLDING TIMES

Analytical holding times for nitrate, nitrite, fluoride, chloride, phosphate, sulfate, pH and conductivity, TDS, TOC, TOX, COD, sulfide, ammonia-nitrogen and alkalinity were assessed to ascertain whether the holding time requirements were met by the laboratory. The holding time requirements are as follows: twenty-eight days for nitrate, nitrite, fluoride, chloride, phosphate, sulfate, ammonia-nitrogen, TOC and COD samples, 14 days for alkalinity, seven days for TDS, TOX and sulfide samples, 48 hours for nitrate, nitrite, phosphate, and conductivity samples and 72 hours for pH samples under the USEPA SW-846 protocol.

Holding times were exceeded for fluoride in SDG No. B07Q63. All associated sample results were qualified as estimates and flagged "J".

Holding times were exceeded for sulfate in SDG No. B07Q63. All associated sample results were qualified as estimates and flagged "J".

Holding times were exceeded for pH in SDG No. B07Q63. All associated sample results were qualified as estimates and flagged "J".

Holding times were grossly exceeded for pH in SDG No. B07Q52. All associated sample results were rejected and flagged "R".

Holding times for all other analytes met QC requirements.

#### 6.3 CALIBRATIONS

All associated instruments were calibrated using the proper standards and procedures.

#### 6.3.1 Initial Calibration

The following calibration procedures must be conducted:

- At least a blank and three standards were used to establish the ion chromatography, ion selective electrode, spectrophotometer, TOC analyzer and TOX analyzer calibrations prior to sample analysis and the correlation was ≥0.995.
- The titrant normality for alkalinity analysis was checked.

All other initial calibration results were acceptable, however, ICV summary forms were not submitted for either data package.

#### 6.3.2 Continuing Calibration Verification

All CCV standards must be analyzed with the required frequency or every 20 samples. The percent recoveries must fall within the 90-110% acceptance windows.

Insufficient instrument calibration verification data (CCVs and CCBs) were provided for fluoride and sulfate analyses in SDG Nos. B07Q52 and B07Q63. All associated results were qualified as estimates and flagged "J".

#### 6.4 BLANKS

प

-

0

1

1

One laboratory preparation blank is analyzed at a frequency of one every 20 samples. All blank results must fall below the CRQL and if not, all associated data <5 times the amount found in the blank is qualified as non-detected "U".

All laboratory blank results were acceptable.

#### 6.5 ACCURACY

#### 6.5.1 Matrix Spike Recovery

Matrix spike analyses are used to assess the analytical accuracy of the reported data and the effect of the matrix on the ability to accurately quantify sample concentrations.

All matrix spike results were acceptable.

## 6.5.2 Laboratory Control Sample Recovery

The LCS monitors the overall performance of the analysis, including the sample preparation. An LCS should be prepared (e.g., digested or distilled) and analyzed with every group of samples which have been prepared together. The performance criteria for aqueous LCS percent recovery is 80 to 120 percent. The performance criteria for solid LCS samples are established through interlaboratory studies coordinated by a certifying agency (e.g., EPA or an independent commercial supplier).

ICV results obtained from the raw data were used to calculate LCS results. All LCS results were found to be acceptable.

### 6.6 PRECISION

I

S

\*\*\*

Oi.

9

Analytical duplicate sample analyses are used to measure laboratory precision and sample homogeneity. Field duplicate analyses are used to measure both the laboratory and the field sampling procedure precision.

All duplicate analyses results were acceptable for this report.

## 6.7 ANALYTE QUANTITATION AND DETECTION LIMITS

Sample results and reported detection limits were recalculated to ensure that the reported results were accurate. Raw data were examined for anomalies, transcription errors, and reduction errors. In addition, the reviewer verified that the results fell within the linear range of the instrument.

### 6.8 OVERALL ASSESSMENT AND SUMMARY

A review of instrument continuing calibration information and QC data indicate that instrument performance was adequate for these analyses. The holding times for fluoride and sulfate exceeded the requirements. All results in one data package were qualified as estimates and flagged "J". The holding times for pH were grossly exceeded and the associated results were rejected and flagged "R". The results for fluoride and sulfate were also flagged as estimates due to insufficient calibration data. The laboratory did not provide any continuing calibration verification (CCV) or continuing calibration blank (CCB) data for fluoride and sulfate analyses in both data packages. Without this information, it cannot be determined whether or not the instrument remained calibrated and the results accurate. Aside from lack of data and the QC problems mentioned above, all other results are usable for all purposes.

| H  |  |
|----|--|
| Ċ  |  |
| ά  |  |
| R  |  |
| ĭ  |  |
| 亨  |  |
| Ţ  |  |
| H  |  |
| Т  |  |
| į, |  |
| Ü  |  |
| 7  |  |
| •  |  |
| Ħ  |  |
| Õ  |  |
| ~  |  |
| •  |  |
| 0  |  |
| _  |  |

| Sample Number   B07Q52   B0Q53   B07Q55   B07Q56   B07Q57   B07Q58   B07Q59   B07Q60   B07Q61   B07Q62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project: WESTING | HOUSE -                                          | HANFOF                                           | AD.      | ]            |       |         |                                                  |          |          |         |                 |          |        |                                                  |   |          |          |         |   |         |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|--------------------------------------------------|----------|--------------|-------|---------|--------------------------------------------------|----------|----------|---------|-----------------|----------|--------|--------------------------------------------------|---|----------|----------|---------|---|---------|----------|
| Sample Number   B07Q52   B0Q53   B07Q55   B07Q56   B07Q57   B07Q58   B07Q59   B07Q60   B07Q61   B07Q62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Laboratory: TMA  |                                                  | - <u>-</u>                                       |          | l            |       |         |                                                  |          |          |         |                 |          |        |                                                  |   |          |          |         |   |         |          |
| Cocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Case .           | SDG: B                                           | 07Q52                                            |          | 1            |       |         |                                                  |          |          |         |                 |          |        |                                                  |   |          |          |         |   |         |          |
| Sample Date   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92     | Sample Number    |                                                  | B07Q52                                           |          | B0Q53        |       | B07Q55  |                                                  | B07Q56   |          | B07Q57  |                 | B07Q58   | -      | B07Q59                                           |   | B07Q60   |          | B07Q61  |   | B07Q62  |          |
| Sample Date   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92   12/9/92     | Location         |                                                  |                                                  |          |              |       |         |                                                  |          |          |         |                 |          |        |                                                  |   |          |          |         |   | -       |          |
| Analytes   Method   Result   Q   Result   Q | Remarks          |                                                  |                                                  |          | DUP          |       | EB      |                                                  |          |          |         |                 | <b>1</b> |        |                                                  |   |          |          | 1 -     |   |         |          |
| Fluoride 300 0.8 J 0.7 J 0.5 J 2.7 J 1.4 J 3.2 J 1.8 J 1.1 J 0.3 J 0.8 J Sulfate 300 61 J 23 J 5 J 21 J 135 J 72 J 25 J 43 J 85 J 62 J pH (pH units) 9045 8.8 R 9 R 8.7 R 7.8 R 8.6 R 7.7 R 7.1 R 6.5 R 5.8 R 6 R N02N03 2.51 UJ 8 J 2.49 U 2.53 U 2.55 U 2.6 U 2.49 U 2.53 U 2.51 U 2.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample Date      |                                                  | 12/9/92                                          |          | 12/9/92      |       | 12/9/92 |                                                  | 12/9/92  |          | 12/9/92 |                 | 12/9/92  |        | 12/9/92                                          |   | 12/9/92  |          | 12/9/92 |   | 12/9/92 |          |
| Fluoride 300 0.8 J 0.7 J 0.5 J 2.7 J 1.4 J 3.2 J 1.8 J 1.1 J 0.3 J 0.8 J Sulfate 300 61 J 23 J 5 J 21 J 135 J 72 J 25 J 43 J 85 J 62 J pH (pH units) 9045 8.8 R 9 R 8.7 R 7.8 R 8.6 R 7.7 R 7.1 R 6.5 R 5.8 R 6 R N02N03 2.51 UJ 8 J 2.49 U 2.53 U 2.55 U 2.6 U 2.49 U 2.53 U 2.51 U 2.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analytes         | Method                                           | Result                                           | a        | Result       | Q     | Result  | Q                                                | Result   | Q        | Result  | Q               | Result   | Q      | Result                                           | Q | Result   | Q        | Result  | Q | Reşult  | Q        |
| pH (pH units) 9045 8.8 R 9 R 8.7 R 7.8 R 8.6 R 7.7 R 7.1 R 6.5 R 5.8 R 6 R N02N03 2.51 UJ 8 J 2.49 U 2.53 U 2.55 U 2.6 U 2.49 U 2.53 U 2.51 U 2.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fluoride         | 300                                              | 0.8                                              | J        | 0.7          | J     | 0.5     |                                                  | 2.7      | J        | 1.4     | J               | 3.2      | J      | 1.8                                              | J | 1.1      | J        | 0.3     | J | 0.8     | J        |
| N02N03 2.51 UJ 8 J 2.49 U 2.53 U 2.55 U 2.6 U 2.49 U 2.53 U 2.51 U 2.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sulfate          | 300                                              | 61                                               | J        | 23           | J     | 5       | J                                                | 21       | J        | 135     | J               | 72       | J      | 25                                               | J | 43       | J        | 85      | J | 62      | J        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pH (pH units)    | 9045                                             | 8.8                                              | R        | 9            | R     | 8.7     | R                                                | 7.8      | R        | 8.6     | R               | 7.7      | R      | 7.1                                              | A | 6.5      | R        | 5.8     | R | 6       | A        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N02N03           |                                                  | 2.51                                             | W        | 8            | J     | 2.49    | U                                                | 2.53     | U        | 2.55    | U               | 2.6      | U      | 2.49                                             | Ū | 2.53     | U        | 2.51    | U | 2.8     | Ü        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              | oxdot |         |                                                  |          |          |         |                 |          |        |                                                  |   |          |          |         |   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         | $I_{-}$                                          |          | $\Gamma$ |         |                 |          |        |                                                  |   |          |          |         |   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         | T                                                |          |          |         | $\lceil \rceil$ | I        |        |                                                  |   |          |          |         | Π |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              | Π     |         | Π                                                |          |          |         | Г               |          | T      |                                                  |   |          |          |         |   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         |                                                  |          |          |         | Г               |          |        |                                                  |   |          | Γ        |         | П |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  | $\Box$   |              | Π     |         | 1                                                | 1        | Γ        |         | Г               |          | T      |                                                  |   |          | Π        |         |   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | T.                                               |                                                  | П        |              | П     |         | Т                                                |          | Γ        |         | Γ               |          |        |                                                  |   |          | Г        |         | Π |         | ,evn     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         | <del>                                     </del> |          |          |         | 1               |          | Г      |                                                  |   |          |          |         | Г |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1                                                |                                                  |          |              |       |         |                                                  |          |          |         | Π               |          |        |                                                  | П |          | Π        |         |   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  | П        |              | П     |         |                                                  |          | Γ        |         | Π               |          |        |                                                  |   |          |          |         |   |         | <b>—</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         |                                                  |          |          |         |                 |          |        |                                                  |   |          |          |         |   |         | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         | 1                                                |          |          |         |                 | 1        |        |                                                  | ĺ |          |          |         |   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  | Π        |              |       |         |                                                  |          |          |         |                 | 1        | Γ      |                                                  |   |          |          |         |   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         |                                                  |          |          |         |                 |          | Ι,     |                                                  |   |          |          |         |   |         | ~        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  | I                                                |          |              |       |         | Ι.                                               |          |          |         |                 |          | $\Box$ |                                                  |   |          |          |         |   |         | Γ        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         |                                                  |          | <u> </u> |         |                 |          | Г      |                                                  | Γ |          |          |         |   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  | I                                                |          |              |       |         |                                                  |          | Γ        |         |                 |          |        |                                                  |   |          |          |         |   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         |                                                  | I        |          |         | Г               |          |        |                                                  |   |          |          |         |   |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         | Π                                                |          | Γ        |         |                 |          | П      |                                                  | Π |          | <u> </u> |         | Π |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          |              |       |         |                                                  |          |          |         |                 | T        |        | T                                                | Ϊ |          | Π        |         | Γ |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                  |                                                  |          | Ī            | Ī     | 1       | 1                                                |          | 1        | 1       | Π               | T        | 1      | T                                                |   |          | T        |         | Π |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | T                                                | <u> </u>                                         |          | <u> </u>     | П     | T       | T                                                | <u> </u> | Τ_       | 1       | Π               | 1        | T      | 1                                                |   |          | Γ        | 1       |   |         | $\Box$   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | <del>                                     </del> | T                                                | $\Gamma$ |              | T     | 1       | $T^-$                                            | 1        | $\Box$   | T       |                 | 1        | 1      | T                                                |   |          | Г        |         | 1 |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>         |                                                  | <del>                                     </del> |          | <u> </u>     |       | t       | ऻऻ                                               | <b> </b> | Γ        | t       |                 | <b>1</b> | 1      |                                                  |   | <b>1</b> | Ι_       |         |   |         | $\Box$   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1                                                |                                                  |          | <del> </del> | T     | 1       | †                                                |          | <u> </u> |         |                 |          | 1      | <del>                                     </del> |   | 1        | <u> </u> | 1       | Т |         | $\Box$   |

## HOLDING TIME SUMMARY

| SDG: B07Q52        | G: B07Q52 REVIEWER: LM                |                 |                  |                  | 3                              | PAGE_1_OF_1_                      |           |  |  |  |  |
|--------------------|---------------------------------------|-----------------|------------------|------------------|--------------------------------|-----------------------------------|-----------|--|--|--|--|
| COMMENTS:          |                                       |                 |                  |                  |                                |                                   |           |  |  |  |  |
| FIELD SAMPLE<br>ID | ANALYSIS<br>TYPE                      | DATE<br>SAMPLED | DATE<br>PREPARED | DATE<br>ANALYZED | PREP.<br>HOLDING<br>TIME, DAYS | ANALYSIS<br>HOLDING<br>TIME, DAYS | QUALIFIER |  |  |  |  |
| B07Q52             | pН                                    | 12/9/92         |                  | 12/18/92         |                                | 2 days                            | R         |  |  |  |  |
| B07Q53             | рН                                    | 12/9/92         |                  | 12/18/92         |                                | 2 days                            | R         |  |  |  |  |
| B07Q55             | рН                                    | 12/9/92         |                  | 12/18/92         |                                | 2 days                            | R         |  |  |  |  |
| B07Q56             | рН                                    | 12/9/92         |                  | 12/23/92         |                                | 2 days                            | R         |  |  |  |  |
| B07Q57             | pН                                    | 12/9/92         |                  | 12/18/92         |                                | 2 days                            | R         |  |  |  |  |
| B07Q58             | pН                                    | 12/9/92         |                  | 12/18/92         |                                | 2 days                            | R         |  |  |  |  |
| B07Q59             | рН                                    | 12/9/92         |                  | 12/23/92         |                                | 2 days                            | R         |  |  |  |  |
| B07Q60             | pН                                    | 12/9/92         |                  | 12/18/92         |                                | 2 days                            | R         |  |  |  |  |
| B07Q61             | рН                                    | 12/9/92         |                  | 12/18/92         |                                | 2 days                            | R         |  |  |  |  |
| B07162             | рН                                    | 12/9/92         |                  | 12/18/92         |                                | 2 days                            | R         |  |  |  |  |
|                    |                                       |                 |                  |                  |                                |                                   |           |  |  |  |  |
|                    |                                       |                 |                  |                  |                                |                                   |           |  |  |  |  |
|                    | · · · · · · · · · · · · · · · · · · · |                 |                  |                  | •                              |                                   |           |  |  |  |  |
|                    | !<br>                                 |                 |                  |                  |                                |                                   |           |  |  |  |  |

## PRECISION DATA SUMMARY

| SDG: B07Q52 | REVIEWER: LM |            | DATE: 4/20/93 |                  | PAGE_1_OF        | 1_        |
|-------------|--------------|------------|---------------|------------------|------------------|-----------|
| COMMENTS:   |              |            |               |                  |                  |           |
| COMPOUND    |              | SAMPLE ID: | SAMPLE ID:    | RPD              | SAMPLES AFFECTED | QUALIFIER |
| Sulfate     |              | B07Q52     | B07Q53        | 90.4             | B07Q52, B07Q53   | J         |
| N02N03      |              | B07Q52     | B07Q53        | 200.0            | B07Q52, B07Q53   | 1         |
|             |              |            |               | +                |                  |           |
|             |              |            |               |                  |                  |           |
|             |              |            |               |                  |                  |           |
| <del></del> |              | -          |               |                  |                  | <u> </u>  |
|             |              |            |               |                  |                  |           |
|             |              |            |               |                  |                  |           |
|             |              |            |               | <del>  -</del> - |                  |           |
|             |              |            |               | -                |                  |           |
|             |              |            |               |                  |                  |           |
| <del></del> |              |            |               | 1                |                  |           |
| <u> </u>    |              |            |               | +                |                  |           |

## DATA QUALIFICATION SUMMARY

| SDG: B07Q52 | REVIEWER: LM                          | DATE: 4/20/93    | PAGE 1 OF 1                        |
|-------------|---------------------------------------|------------------|------------------------------------|
| COMMENTS:   | 1 Table Mark                          | 1                | PAGE_1_OF_1                        |
| COMPOUND    | QUALIFIER                             | SAMPLES AFFECTED | REASON                             |
| Fluoride    | 1                                     | All              | Insufficient CCV/CCB Data Provided |
| Sulfate     | J                                     | All              | Insufficient CCV/CCB Data Provided |
| рН          | R                                     | All              | Holding Time Grossly<br>Exceeded   |
| Sulfate     | J                                     | B07Q52, B07Q53   | Field Duplicate RPD                |
| N02N03      | J                                     | B07Q52, B07Q53   | Field Duplicate RPD                |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             | !                                     |                  | •                                  |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             | . •                                   |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             |                                       |                  |                                    |
|             | · · · · · · · · · · · · · · · · · · · | ·                |                                    |

0

| Project: WESTINGH | IOUSE-H    | ANFORE   | <u> </u>    | ]          |          |             |              |                                              |            |          |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                        |          |          |
|-------------------|------------|----------|-------------|------------|----------|-------------|--------------|----------------------------------------------|------------|----------|----------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|----------|----------|
| Laboratory: TMA   |            |          |             | }          |          | •           |              |                                              |            |          |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                        |          |          |
| Case              | SDG: B     |          |             |            |          |             |              |                                              |            |          |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            | B07Q71                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                        |          |          |
| Sample Number     |            | B07Q63   |             | B07Q64     |          |             | B07Q66       | B07Q66 B                                     |            | B07Q67   |                | B07Q68   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B07Q69       |            |                                                | B07Q72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | B07Q73                                 |          |          |
| Location          |            | 120-N-1  |             | 120-N-1    | <u> </u> | 120-N-      | 120-N-1 12   |                                              |            | 120-N-1  | 20-N-1 120-N-1 |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120-N-1      |            | 120-N-                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120-N-1   | <u> </u>                               | 120-N-1  |          |
| Remarks           |            | EB       |             |            |          |             |              |                                              |            |          |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |            |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Duplicate |                                        |          |          |
| Sample Date       |            | 12/18/93 |             | 12/18/93   |          | 12/18/93    |              | 12/18/93                                     |            | 12/18/93 |                | 12/18/93 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12/18/93     |            | 12/18/93                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12/18/93  |                                        | 12/18/93 |          |
| Analytes          | Method     |          | Q           |            | Q        | Result      | Q            |                                              | a          | Result   | œ              |          | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result       | Q          | Result                                         | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Q                                      |          | a        |
| Fluoride          | 300.0      | 0.3      | J           | 0.3        | j        | 1.0         | J            |                                              | J          |          | J              | 1.1      | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0          | J          |                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | J                                      |          | J        |
| Sulfate           | 300.0      | 4.0      | J           | 62.0       | J        | 27.0        | J            | <u></u>                                      | <u>J</u> _ | 48.0     | 7              | 17.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51.0         | J          |                                                | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41.0      | J                                      |          | 1        |
| pH (pH units)     | 9045       | 6.9      | J           | 5.6        | J        | 6.2         | J            |                                              | 3_         | 6.3      | 7              | 6.7      | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.4          | J          | 6.2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | J_                                     | 7.1      | J        |
| N03N02 (mg N/Kg)  | 353.3      | 2.48     | U           | 2.51       | U        | 2.42        | U            | 2.42                                         | U          | 2.47     | U              | 2.49     | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.41         | U          | 255                                            | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.48      | U                                      | 2.43     | U        |
|                   | <u> </u>   | <u> </u> |             | <u> </u>   | <b> </b> | <u> </u>    | <u></u>      | <u> </u>                                     | L_         | ļ        | <u> </u>       | <u> </u> | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | <u>Ļ</u> . |                                                | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}$ |           | L.                                     |          | Ш        |
|                   | ļ <u>.</u> |          | _           |            |          |             | <u>L.</u>    | <u> </u>                                     | L_         | <b></b>  | <u> </u>       | L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | <u> </u>   |                                                | $oxed{oxed}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | L_                                     |          | Ш        |
|                   | <u> </u>   | <u> </u> |             |            |          |             | <u> </u>     |                                              | L_         |          |                | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | <u> </u>   |                                                | $oxed{oxed}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>  | <u> </u>                               |          | Ш        |
|                   | <b>.</b>   | <u> </u> | <u> </u>    |            | _        |             | <u> </u>     | <u> </u>                                     |            |          |                | <u> </u> | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>     | <u> </u>   |                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>  | <u> </u>                               |          | Ш        |
|                   | <u> </u>   | <u> </u> |             |            |          |             | L            | <u> </u>                                     | L_         |          | _              | <u> </u> | 匚                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | <u> </u>   |                                                | ╙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>   | L.                                     |          | Ш        |
|                   |            | <u> </u> | <u> </u>    | <u> </u>   | <u> </u> |             | <u>L</u> .   |                                              | L          |          |                | <u> </u> | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | <u> </u>   |                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | <u> </u>                               |          | Ш        |
|                   |            | L        | <u>L.</u> . |            | <u> </u> |             | L            |                                              | L          |          |                |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | <u> </u>   | ļ <u> </u>                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | L_                                     |          |          |
|                   |            | <u> </u> | L.,         |            |          | <u> </u>    | ╙            | ļ                                            | ļ          |          |                | ļ        | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del> </del> | <u> </u>   | <b></b>                                        | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>  | <u> </u>                               |          |          |
|                   |            | <u> </u> | _           |            |          | ļ           | <del> </del> | <u> </u>                                     | L_         |          | ļ              | <u> </u> | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ            | <u> </u>   | <b></b> _                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L         | L_                                     |          | Ш        |
|                   |            | ļ        |             | ļ          |          | ļ. <u>.</u> | <u> </u>     |                                              |            |          |                | <b></b>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ļ            | _          |                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ļ         | L                                      |          |          |
|                   | <u> </u>   | <b></b>  | <u> </u>    | <u> </u>   | <b>!</b> | <b></b>     | _            | <u> </u>                                     | _          |          |                |          | <u>L</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ            | <u> </u>   | <b>.</b>                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>  | L_                                     |          | <u> </u> |
|                   |            | <u> </u> | _           | ļ. <u></u> | <u> </u> | ļ           | <del> </del> | <u> </u>                                     |            |          | _              |          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ            | <u> </u>   |                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>  | L                                      |          |          |
|                   |            |          | _           | ļ          |          |             | <u> </u>     |                                              |            |          |                |          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ            | <u> </u>   |                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | <u> </u>                               |          |          |
|                   | <u> </u>   | <u> </u> |             | ļ          | L        | ļ           | L            | <u>                                     </u> |            |          |                | <u> </u> | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ            | <u> </u>   |                                                | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | L_                                     |          | Щ        |
|                   | <u> </u>   | Ļ        | <u> </u>    |            | L        | <u> </u>    | oxdot        | <u> </u>                                     |            |          |                |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>     | <u> </u>   | ļ <u>.                                    </u> | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L         | ╙                                      |          |          |
|                   |            | <u> </u> | ļ           |            |          |             | Ļ.           |                                              |            |          | <u> </u>       | <u> </u> | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | <u> </u>   | <u> </u>                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>  | $oldsymbol{oldsymbol{oldsymbol{eta}}}$ |          |          |
|                   |            | <u></u>  | _           |            |          |             | <u> </u>     | <u> </u>                                     | <u> </u>   | ļ        |                | <u> </u> | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | <u> </u>   | <u> </u>                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>  | _                                      |          | Щ        |
|                   |            | <b> </b> | <b> </b>    | <b></b>    |          | <b></b>     | <u> </u>     |                                              |            | <u> </u> | <u> </u>       |          | ∟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b></b>      |            | <b>.</b>                                       | ┺                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | <u> </u>                               |          |          |
|                   |            |          | <u> </u>    |            | L_       |             | $oxed{oxed}$ | L                                            |            |          |                |          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ļ            | <u> </u>   |                                                | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>  | L                                      |          |          |
|                   |            | <u></u>  |             |            | L.       |             | <u> </u>     | L                                            | L.         |          | L.             | L        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>     | lacksquare | <b> </b>                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>  | L-                                     |          | <u> </u> |
|                   |            |          | <u> </u>    | <u> </u>   |          |             | <u> </u>     |                                              | Ŀ          | ļ        |                | <u> </u> | 匚                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L            | <u> </u>   | ļ                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>  | L                                      |          | <u> </u> |
|                   |            |          |             |            | L        | L           |              |                                              |            |          | <u> </u>       |          | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | <u> </u>   |                                                | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | L                                      |          | <b> </b> |
|                   |            |          |             |            |          | ļ <u> </u>  | $oxed{oxed}$ | [                                            |            |          |                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>     | L.         |                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | L_                                     |          | L        |
|                   |            |          | <u> </u>    |            | L        |             | <u>L</u> .   |                                              |            |          |                | L        | $ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ldsymbol{ld}}}}}}$ | ļ            | <u> </u>   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | L.                                     |          | Щ        |
|                   | L          |          | <u> </u>    | <u> </u>   | <u> </u> | 1           | <u>L_</u>    |                                              |            | L        | Ļ              | l        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>     | L_         | <u> </u>                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>  | <u> </u>                               | <u> </u> | <u> </u> |

## **HOLDING TIME SUMMARY**

| SDG: B07Q63        | REVIEWER:        | LM              | <u></u>          | DATE: 4/21/9                     | 3           | PAGE_1                            | OF_2_             |
|--------------------|------------------|-----------------|------------------|----------------------------------|-------------|-----------------------------------|-------------------|
| COMMENTS:          |                  |                 |                  |                                  |             | <del></del>                       | , ,,,, , <u> </u> |
| FIELD SAMPLE<br>ID | ANALYSIS<br>TYPE | DATE<br>SAMPLED | DATE<br>PREPARED | DATE HOLDING ANALYZED TIME, DAYS |             | ANALYSIS<br>HOLDING<br>TIME, DAYS | QUALIFIER         |
| B07Q63             | Fluoride         | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | 1                 |
| B07Q64             | Fluoride         | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q65             | Fluoride         | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q66             | Fluoride         | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q67             | Fluoride         | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q68             | Fluoride         | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | l                 |
| B07Q69             | Fluoride         | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J .               |
| B07Q71             | Fluoride         | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q72             | Fluoride         | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q73             | Fluoride         | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q63             | Sulfate          | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q64             | Sulfate          | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q65             | Sulfate          | 12/18/92        |                  | 2/3/93                           | · · · · · · | 28 days                           | J                 |
| B07Q66             | Sulfate          | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q67             | Sulfate          | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |
| B07Q68             | Sulfate          | 12/18/92        |                  | 2/3/93                           |             | 28 days                           | J                 |

**HOLDING TIME SUMMARY** 

# WHC-SD-EN-TI-157, Rev. 0

### SDG: B07Q63 REVIEWER: LM DATE: 4/21/93 PAGE 2\_OF 2 **COMMENTS:** PREP. **ANALYSIS** FIELD SAMPLE **ANALYSIS** DATE DATE HOLDING HOLDING DATE **TYPE QUALIFIER SAMPLED PREPARED ANALYZED** TIME, DAYS TIME, DAYS B07O69 Sulfate 12/18/92 2/3/93 28 days B07Q71 Sulfate 12/18/92 2/3/93 28 days B07Q72 Sulfate 2/3/93 12/18/92 28 days B07073 Sulfate 2/3/93 28 days 12/18/92 B07Q63 Нđ 12/18/92 12/23/93 2 days B07Q64 pН 2 days 12/23/93 12/18/92 B07Q65 pН 12/18/92 12/23/93 2 days B07066 рH 2 days 12/18/92 12/23/93 B07Q67 рH 12/18/92 12/23/93 2 days рH B07068 12/18/92 12/23/93 2 days 2 days B07069 DΗ 12/18/92 12/23/93 J B07Q71 рΗ 12/18/92 12/23/93 2 days 2 days B07Q72 Ηq 12/18/92 12/23/93 B07Q73 pН 12/18/92 12/23/93 2 days

## DATA QUALIFICATION SUMMARY

| F           |              |                     |                                    |
|-------------|--------------|---------------------|------------------------------------|
| SDG: B07Q63 | REVIEWER: LM | DATE: 4/21/93       | PAGE_1_OF_1_                       |
| COMMENTS:   |              |                     |                                    |
| COMPOUND    | QUALIFIER    | SAMPLES<br>AFFECTED | REASON                             |
| Fluoride    | J            | Ali                 | Insufficient CCV/CCB data provided |
| Sulfate     | 1            | All                 | Insufficient CCV/CCB data provided |
| Fluoride    | ]            | All                 | Holding time exceeded              |
| Sulfate     | J            | Ail                 | Holding time exceeded              |
| pН          | J            | All                 | Holding time exceeded              |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     | _                                  |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             | _            |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     | ·                                  |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |
|             |              |                     |                                    |

## THIS PAGE INTENTIONALLY LEFT BLANK

### 7.0 REFERENCES

- EPA, 1987, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, Environmental Protection Agency, Washington, D.C.
- EPA, 1988a, EPA Contract Laboratory Program Statement of Work for Organics Analyses, Multi-Media, Multi-Concentration, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1988b, Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1988c, EPA Contract Laboratory Program Statement of Work for Inorganics Analyses, Multi-Media, Multi-Concentration, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1988d, Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1990, EPA Contract Laboratory Program Statement of Work for Inorganic Analyses, Multi-media, Multi-Concentration, U.S. Environmental Protection Agency, Washington, D.C.
- EPA, 1991, EPA Contract Laboratory Program Statement of Work for Organics Analyses, Multi-Media, Multi-Concentration, Environmental Protection Agency, Washington, D.C.
- WHC, 1992a, Data Validation Procedures for Chemical Analyses, WHC-SD-EN-SPP-002, Rev. 1, Westinghouse Hanford Company, April 1992.

~~

0

## THIS PAGE INTENTIONALLY LEFT BLANK

|          | Date Received:                                                                |                                                       | INFO                       | RMATIC                                 | N RELEA                                | SE RE                  | QUEST                                                               | Reference:<br>WHC-CM-3-4            |  |  |
|----------|-------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------|----------------------------------------|----------------------------------------|------------------------|---------------------------------------------------------------------|-------------------------------------|--|--|
|          |                                                                               |                                                       |                            | Complete f                             | or all Types o                         |                        |                                                                     |                                     |  |  |
|          | [] Speech or<br>Presentation<br>[] Full                                       | (Che                                                  | pose []<br>ck []<br>one [] | () Techni                              | cal Report                             | WHC-                   | ber (include revision,<br>SD-EN-TI-157, Re                          | volume, etc.)<br>V. 0               |  |  |
|          | [] Summe<br>[] Abstr                                                          | ary suff<br>ract                                      |                            | ssertation<br>Manual<br>Brochu         |                                        |                        |                                                                     | ·                                   |  |  |
|          | [] Speakers E<br>[] Poster Ses<br>[] Videotape                                | ssion                                                 | Ω<br>Ω                     | Other                                  | lled Document                          |                        | elease Required  May 5, 1                                           | 993                                 |  |  |
|          | Title: Data Va<br>Unit Test Pi                                                | <u>.</u>                                              |                            |                                        |                                        |                        | Unclassified Categor UC- N/A                                        | Level 3Q                            |  |  |
|          | <del>                                     </del>                              | closure been subm<br>Disclosure No(s)                 | itted by I                 |                                        | propri<br>[X]                          | etary data<br>lo [] Yo | eived from others in co<br>, trade secrets, and/o<br>es (Identify)  | nridence, such as<br>or inventions? |  |  |
| ,        | If "Yes", has wri                                                             | No [] Yes<br>tten permission be<br>(Attach Permission | n)                         |                                        | Tradem<br>[X]                          | 10 [] Y                | es (Identify)                                                       |                                     |  |  |
| in.      | Title of Conferen                                                             |                                                       |                            | complete 10                            | r Speech or Pr<br>Group                |                        | Sponsoring                                                          |                                     |  |  |
|          | Date(s) of Confer                                                             | ence or Meeting                                       | City/Stat                  | te                                     |                                        |                        | edings be [] ial be handed []                                       | Yes [] No<br>Yes [] No              |  |  |
| 5 )      | Title of Journal N/A                                                          |                                                       |                            |                                        |                                        | out?                   |                                                                     |                                     |  |  |
|          | Barrier B                                                                     | INC ON 7 (                                            | W                          |                                        | IST FOR SIGNAT                         |                        |                                                                     |                                     |  |  |
| £.,**    | Review Required po                                                            | ,                                                     | <u>Yes</u>                 |                                        | <u>Name (prir</u>                      |                        | cates Approval <u>Signature</u>                                     | <u> Date</u>                        |  |  |
| 2 )      | Controlled Nuclea<br>Patent - General (                                       |                                                       | []<br>[X]                  | [X] <u> </u>                           | GC Me                                  | mo 2                   | 14/93 145                                                           | 5/2/23                              |  |  |
| '        | Legal - General Co                                                            | ounsel                                                | įχj                        | ii ~                                   | (1)                                    |                        | 11 (2.5                                                             | 5/2/02                              |  |  |
| ,        | Applied Technology<br>Controlled Informa<br>International Pro                 | ation or                                              | []                         | [X]                                    | ,                                      |                        |                                                                     | <u> </u>                            |  |  |
| القواو   | WHC Program/Projec                                                            | =                                                     | ΪĨ                         | [x] _                                  | —————————————————————————————————————— |                        |                                                                     |                                     |  |  |
| <b>⊕</b> | Communications                                                                |                                                       | ΪÌ                         | [X] _                                  |                                        |                        |                                                                     |                                     |  |  |
|          | RL Program/Project                                                            | t                                                     | Ϊí                         | רֹגֹוֹ –                               |                                        |                        |                                                                     |                                     |  |  |
|          | Publication Service                                                           | ces                                                   | וֹאַז                      | $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ | . Herma                                | . 13                   | of the                                                              | - dillo-                            |  |  |
|          | Other Program/Pro                                                             | ject                                                  | []                         | [X]                                    | 1 /1EV VV (2                           | <u> </u>               | J. Herman                                                           | m 5/4/93                            |  |  |
|          | Information confor                                                            | rms to all applica                                    | ble requi                  | rements. T                             | he above infor                         | mation is              | certified to be correc                                              | et.                                 |  |  |
|          | References Availab<br>Audience                                                | ole to Intended                                       | Yes<br>[X]                 | <u>No</u><br>[]                        |                                        | uired befo             | ELEASE ADMINISTRATION A<br>pre release. Release in<br>try comments. |                                     |  |  |
|          | Transmit to DOE-HG<br>Scientific and Tec<br>Information<br>Author/Requestor ( | chnical                                               | .)                         | [X]<br>Date                            |                                        |                        | TA R                                                                |                                     |  |  |
|          | A. D. Krug Intended Audience                                                  | alem D.K.                                             | 3/                         | 4/93                                   |                                        |                        |                                                                     |                                     |  |  |
|          | [] Internal Responsible Manage                                                | · •                                                   | X] Exteri<br>:une)         | nal<br>Date                            |                                        | •                      | - 5 14 1 T                                                          |                                     |  |  |
|          | R. P. Henckel                                                                 |                                                       | _                          | 1/93                                   | Date Cancell                           |                        | L Date Discour                                                      |                                     |  |  |

## THIS PAGE INTENTIONALLY LEFT BLANK